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Overview

In this supplementary material, we �rst provide a brief summary of the likelihood function

for the Cook et al. two-source under-misclassi�cation model, which we discuss in detail in

our main Research Note. We then present our aforementioned Monte Carlo replications and

extensions of Cook et al. (2017). Following this Monte Carlo section, we provide extended

discussions and analyses of (i) our African repression application and (ii) our Colombian

human rights violation (HRV) application. In each of these application sections, we �rst

describe our data and aggregation decisions in detail, before presenting a series of bivariate

comparisons and summary statistics. Following these bivaraite comparisons, each application

then applies and interprets Cook et al.'s multi-source models, before �nally validating the

results obtained from these models with an external, gold standard records (GSRs). Lastly,

we present the formulas for the classi�cation statistics that we employ within our extended

application discussions.
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Cook et al. Likelihood

Recall that the joint probability statement for Cook et al.'s two-source under-misclassi�cation

model (as reported in our main Research Note) is:

Pr(Y1 = 0,Y2 = 0|X,Z1,Z2) = [1− F (X, β)] + α1(X,Z1)α2(X,Z2)F (X, β);

Pr(Y1 = 0,Y2 = 1|X,Z1,Z2) = α1(X,Z1) [1− α2(X,Z2)]F (X, β);

Pr(Y1 = 1,Y2 = 0|X,Z1,Z2) = [1− α1(X,Z1)]α2(X,Z2)F (X, β);

Pr(Y1 = 1,Y2 = 1|X,Z1,Z2) = [1− α1(X,Z1)] [1− α2(X,Z2)]F (X, β)

(A.1)

This statement has the corresponding likelihood function (across N observations) of:

L(β, η1, η2) =
∏{

[1− F (X, β)] + α1(X,Z1, η1)α2(X,Z2, η2)F (X, β)
}(1−Y1)(1−Y2)

×
{
α1(X,Z1, η1) [1− α2(X,Z2, η2)]F (X, β)

}(1−Y1)Y2

×
{
[1− α1(X,Z1, η1)]α2(X,Z2, η2)F (X, β)

}Y1(1−Y2)

(A.2)

×
{
[1− α1(X,Z1, η1)] [1− α2(X,Z2, η2)]F (X, β)

}Y1Y2

Note that the likelihood in Equation A.2 is a slightly modi�ed version of the likelihood

reported in Cook et al. (2017, 228). Speci�cally, we have corrected the ordering of the

exponents within the �rst and fourth lines of the likelihood's original presentation in Cook

et al. (2017, 228) to accurately match the joint probability statements in Equation A.1.

Monte Carlo Extensions

This section replicates and extends the Monte Carlo experiments found in Cook et al.

(2017). The original Monte Carlo experiments performed by Cook et al. (2017) primarily

compare their multi-source misclassi�cation models1 to the following plausible alternatives:

1Speci�cally, the two-source constant misclassi�cation-probability version of the Cook et al. estimator and
the two-source version of Cook et al.'s estimator that includes covariates in the corresponding misclassi�cation
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a naive probit model, a Hausman (i.e., single/collapsed source) misclassi�cation estimator

with constant probabilities in the misclassi�cation stage, and a Hausman misclassi�cation

estimator with covariates included in the misclassi�cation stage (Hausman, Abrevaya and

Scott-Morton, 1998). In each of these cases, Cook et al. examined a binary dependent

variable with two reporting sources, wherein each reporting source exhibited moderate levels

of underreporting. We extend these experiments below for two plausible situations that are

likely to arise in applications of the Cook et al. model to political event data: (i) severe

underreporting in both reporting sources analyzed and (ii) severe underreporting bias in one

reporting source but very low underreporting bias in a second reporting source.

Extension 1

Extension 1 examines the case of severe underreporting bias within both (i.e., two) re-

porting sources. Here, we �rst consider Experiment 1 from the simulations performed by

Cook et al. (2017). In Experiment 1, the authors perform constant, non-di�erential error

simulations, where the α's�indicating the misclassi�cation rate for source 1 and 2�are set

so that α1 = .35 and α2 = .2. The replication of the bias estimates for β0 and β1 provided
2

in Cook et al. (2017) are presented for reference in A.1.3

Table A.2 presents the extension results of the simulation for estimates of β0 and β1 when

α = .85 and α2 = .9 (i.e., severe underreporting in both sources) in Experiment 1.4 Brie�y, we

can see that for all models, except for Model 3, the bias, standard deviation, and standard

error for the estimate of β0 increase. For Model 3, the Hausman model with covariates,

the bias, standard deviation, and standard error for Model 3 all decrease. However, the

magnitude of the standard deviation and standard error are such that this estimate is still

fairly imprecise. Interestingly, after introducing severe underreporting in both sources, the

bias switches directions (relative to the Cook et al.'s original simulation results) for both

stages.
2I.e., the coe�cient estimates for the constant term and covariate related to the occurrence of one's actual

process or event of interest.
3Note that the values for Model 4 are slightly di�erent from those reported in Cook et al. (2017).
4Alternatively, Table A.5 presents both the original simulation results and the adjusted simulation results

side-by-side.
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Table A.1: Replication of Simulation Results (Table 1, p231)

(1) (2) (3) (4) (5)
Naive Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/ Cov Const Pr w/ Cov
Experiment 1: α1 = .35, α2 = .2

β0 = -1 Bias 0.052 -0.007 -1.704 0.004 0.002
STD 0.058 0.092 8.472 0.063 0.064
SE 0.060 0.092 3.336 0.063 0.064
MSE 0.006 0.009 74.604 0.004 0.004
CP (%) 87.500 92.177 95.792 95.900 95.700

β1 = 1 Bias 0.054 -0.028 -1.388 -0.007 -0.005
STD 0.066 0.111 9.308 0.075 0.078
SE 0.067 0.110 3.028 0.077 0.079
MSE 0.007 0.013 88.478 0.006 0.006
CP (%) 85.700 92.979 93.086 95.500 95.300

Table A.2: Adjusted Simulation Results (Table 1, p231)

(1) (2) (3) (4) (5)
Naive Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/ Cov Const Pr w/ Cov
Experiment 1: α1 = .85, α2 = .9

β0 = -1 Bias 0.798 -1.698 -0.752 -0.027 -0.364
STD 0.082 46.201 7.957 0.303 1.123
SE 0.086 108.407 2.510 0.274 0.743
MSE 0.644 2135.244 63.809 0.093 1.392
CP(%) 0.000 80.300 30.589 92.593 88.608

β1 = 1 Bias 0.469 -11.854 -2.289 -0.117 -0.157
STD 0.073 322.358 15.710 0.514 1.203
SE 0.079 1172.196 4.596 0.318 0.584
MSE 0.225 103951.402 251.805 0.277 1.470
CP(%) 0.000 82.400 44.614 93.694 91.552

of Cook et al.'s multi-source models (Models 4 and 5) moving from a slight positive bias

to a larger negative bias in these estimates. Under our �rst extension, the mean squared

error increases for all models except for Model 3. However, the magnitude of the change

di�ers across models, with Model 2 notably increasing from .009 to 2135.244. The coverage

probabilities also decrease for every model, as expected, though again with wildly di�ering
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magnitudes. For example, the naive probit (Model 1) sees its coverage probabilities approach

0 percent, whereas the Hausman with covariates model (i.e., Model 3) decreases in coverage

probabilities to around 30 percent.

For β1, the changes under extension 1 are similar in direction, but not magnitude, across

the models: the bias, standard deviation, standard error, and mean squared error each

increase. The coverage probabilities again decrease for all models. Overall, Model 4�

Cook et al.'s multi-source model with constant probabilities�seems to perform the best in

estimating both β0 and β1 under circumstances of severe underreporting in two sources.

Table A.3 presents the replicated marginal e�ects provided in Cook et al. (2017). Table

A.4 then presents the marginal e�ects, ∂Y/∂X, for Experiment 1 when α1 = .85 and α2 = .9

(i.e., for extension 1).5 Intuitively, we see that for all models, except for Model 2, the bias

of the marginal e�ect increases under circumstances of severe underreporting in two binary

sources. The bias decreases for Model 2, but also switches from a positive to negative bias,

with both the standard deviation and mean squared error increasing. For both of Cook

et al.'s multi-source models, the bias increases, along with the standard deviation and mean

squared error, with the bias for Model 5 switching from positive to negative.

Table A.3: Replication of Marginal E�ects in Simulation Studies (Table 2, p232)

(1) (2) (3) (4) (5)
Naive Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/ Cov Const Pr w/ Cov
Experiment 1: α1 = .35, α2 = .2

∂Y/∂X Bias -0.030 0.011 -0.038 0.002 0.001
SE 0.023 0.049 0.109 0.027 0.028
MSE 0.001 0.002 0.013 0.001 0.001

Tables A.5-A.7 provide the results of the two simulations (i.e., Cook et al. (2017)'s original

Experiment 1 and our �rst extension) side by side. The original results (α1 = .35, α2 = .2)

are presented in the white columns; the adjusted simulation results (α1 = .85, α2 = .9) are

5Alternatively, Table A.6 presents both the original simulation results and the adjusted simulation
marginal e�ects side-by-side.
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Table A.4: Adjusted Marginal E�ects in Simulation Studies (Table 2, p232)

(1) (2) (3) (4) (5)
Naive Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/ Cov Const Pr w/ Cov
Experiment 1: α1 = .85, α2 = .9

∂Y/∂X Bias -0.275 -0.005 -0.187 0.020 -0.040
STD 0.011 0.172 0.145 0.126 0.172
MSE 0.076 0.030 0.056 0.016 0.031

presented in the gray columns. Figures A.1 and A.2 present the β's and marginal e�ects

simulation results, with the original results in black and the adjusted in blue. The dots

are the bias for each model, with the bars representing the range covered by one standard

deviation below and one standard deviation above. For purposes of clarity, the graphs are

scaled so that the bars for the adjusted simulation of Model 26 are outside the range.7 As

noted earlier, these Tables and Figures largely con�rm and re-present the patterns discussed

above.

Table A.5: Comparison of Simulation Results (Table 1, p231)

Naive Hausman Hausman Multi-source Multi-source
Probit Const Pr w/ Cov Const Pr w/ Cov

(1) (1a) (2) (2a) (3) (3a) (4) (4a) (5) (5a)
β0 = -1 Bias 0.052 0.798 -0.007 -1.698 -1.704 -0.752 0.004 -0.027 0.002 -0.364

STD 0.058 0.082 0.092 46.201 8.472 7.957 0.063 0.303 0.064 1.123
SE 0.060 0.086 0.092 108.407 3.336 2.510 0.063 0.274 0.064 0.743
MSE 0.006 0.644 0.009 2135.244 74.604 63.809 0.004 0.093 0.004 1.392
CP(%) 87.500 0.000 92.177 80.300 95.792 30.589 95.900 92.593 95.700 88.608

β1 = 1 Bias 0.054 0.469 -0.028 -11.854 -1.388 -2.289 -0.007 -0.117 -0.005 -0.157
STD 0.066 0.073 0.111 322.358 9.308 15.710 0.075 0.514 0.078 1.203
SE 0.067 0.079 0.110 1172.196 3.028 4.596 0.077 0.318 0.079 0.584
MSE 0.007 0.225 0.013 103951.402 88.478 251.805 0.006 0.277 0.006 1.470
CP(%) 85.700 0.000 92.979 82.400 93.086 44.614 95.500 93.694 95.300 91.552

White columns: Experiment 1 (α1 = .35, α2 = .2). Gray columns: Experiment 1 (α1 = .85, α2 = .9).

6For β0 they range from -47.899 to 44.503; for β1 they range from -334.212 to 310.504.
7Graphs at natural scale are provided in Figure A.3.
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Figure A.1: Comparison of Bias for Original Simulation (Black) with Adjusted (Blue)

Table A.6: Comparison of Marginal E�ects in Simulation Studies (Table 2, p232)

Naive Hausman Hausman Multi-source Multi-source
Probit Const Pr w/ Cov Const Pr w/ Cov

(1) (1a) (2) (2a) (3) (3a) (4) (4a) (5) (5a)
∂Y/∂X Bias -0.030 -0.275 0.011 -0.005 -0.038 -0.187 0.002 0.020 0.001 -0.040

STD 0.023 0.011 0.049 0.172 0.109 0.145 0.027 0.126 0.028 0.172
MSE 0.001 0.076 0.002 0.030 0.013 0.056 0.001 0.016 0.001 0.031

White columns: Experiment 1 (α1 = .35, α2 = .2). Gray columns: Experiment 1 (α1 = .85, α2 = .9).

Table A.7: Comparison of Simulation Results (Table 1, p231)

Naive Hausman Hausman Multi-source Multi-source
Probit Const Pr w/ Cov Const Pr w/ Cov

(1) (1a) (2) (2a) (3) (3a) (4) (4a) (5) (5a)
β0 = -1 Bias 0.052 0.798 -0.007 -1.698 -1.704 -0.752 0.004 -0.027 0.002 -0.364

STD 0.058 0.082 0.092 46.201 8.472 7.957 0.063 0.303 0.064 1.123
SE 0.060 0.086 0.092 108.407 3.336 2.510 0.063 0.274 0.064 0.743
MSE 0.006 0.644 0.009 2135.244 74.604 63.809 0.004 0.093 0.004 1.392
CP(%) 87.500 0.000 92.177 80.300 95.792 30.589 95.900 92.593 95.700 88.608
MAE 0.063 0.798 0.072 2.130 1.746 1.942 0.050 0.229 0.051 0.615

β1 = 1 Bias 0.054 0.469 -0.028 -11.854 -1.388 -2.289 -0.007 -0.117 -0.005 -0.157
STD 0.066 0.073 0.111 322.358 9.308 15.710 0.075 0.514 0.078 1.203
SE 0.067 0.079 0.110 1172.196 3.028 4.596 0.077 0.318 0.079 0.584
MSE 0.007 0.225 0.013 103951.402 88.478 251.805 0.006 0.277 0.006 1.470
CP(%) 85.700 0.000 92.979 82.400 93.086 44.614 95.500 93.694 95.300 91.552
MAE 0.070 0.469 0.086 12.095 1.563 2.839 0.061 0.270 0.063 0.533

White columns: Experiment 1 (α1 = .35, α2 = .2). Gray columns: Experiment 1 (α1 = .85, α2 = .9).
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Figure A.2: Comparison of Marginal E�ects Original Simulation (Black) with Adjusted
(Blue)
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Figure A.3: Comparison of Bias for Original Simulation (Black) with Adjusted (Blue) with
Model 2 Standard Deviation
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Extension 2

Our second extension reconsiders Cook et al.'s Experiment 1 under circumstances where

the researcher encounters one highly accurate reporting source and one extremely inaccurate

reporting source. For reference, Table A.88 provides the original results of the simulation

performed in Cook et al. (2017), where the misclassi�cation rates for sources 1 and 2 are set

to α1 = .35 and α2 = .2, respectively. As mentioned above, the goal of our second extension

is to investigate the performance of the Cook et al. (2017) estimators when the rates of

misclassi�cation among two distinct reporting sources are substantially di�erent from one

another. Correspondingly, Table A.9 presents the results of this extension, speci�cally for

estimates of β0 and β1 when α = .1 and α2 = .9, while maintaining all other quantities to

the levels assigned by Cook et al. under their Experiment 1.9

Table A.8: Replication of Simulation Results (Table 1, p231)

(1) (2) (3) (4)10 (5)
Naive Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/ Cov Const Pr w/ Cov
Experiment 1: α1 = .35, α2 = .2

β0 = -1 Bias 0.052 -0.007 -1.704 0.004 0.002
STD 0.058 0.092 8.472 0.063 0.064
SE 0.060 0.092 3.336 0.063 0.064
MSE 0.006 0.009 74.604 0.004 0.004
MAE 0.063 0.072 1.746 0.050 0.051
CP (%) 87.500 92.177 95.792 95.900 95.700

β1 = 1 Bias 0.054 -0.028 -1.388 -0.007 -0.005
STD 0.066 0.111 9.308 0.075 0.078
SE 0.067 0.110 3.028 0.077 0.079
MSE 0.007 0.013 88.478 0.006 0.006
MAE 0.070 0.086 1.563 0.061 0.063
CP (%) 85.700 92.979 93.086 95.500 95.300

Brie�y, we see in our second extension that the bias for β0 and β1 increases slightly for

8Note: we have also added values for the Mean Average Error (MAE) to this Table.
9Alternatively, Table A.12 presents both the original simulation results and the adjusted simulation results

side-by-side. Additionally, Table A.14 provides the results for the �rst extension where α1 = .85 and α2 = .9
for reference.
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Table A.9: Results of Extension (Table 1, p231)

(1) (2) (3) (4) (5)
Naive Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/ Cov Const Pr w/ Cov
Experiment 1: α1 = .1, α2 = .9

β0 = -1 Bias 0.066 -0.001 -1.519 0.006 -0.029
STD 0.058 0.097 7.570 0.073 0.111
SE 0.060 0.097 2.836 0.074 0.099
MSE 0.008 0.009 59.549 0.005 0.013
MAE 0.074 0.076 1.573 0.057 0.080
CP(%) 83.100 90.700 93.681 94.100 97.202

β1 = 1 Bias 0.068 -0.025 -1.139 -0.008 0.026
STD 0.065 0.120 8.412 0.093 0.124
SE 0.067 0.114 2.484 0.088 0.101
MSE 0.009 0.015 71.993 0.009 0.016
MAE 0.079 0.092 1.339 0.073 0.096
CP(%) 81.600 92.600 91.775 94.200 90.754

Model 1 and Model 4, while it decreases for Models 2 and 3.11 The bias in Model 5 both

increases and changes direction, moving from positive to negative for β0 and from negative to

positive for β1. However, in all models, except for Model 3, the uncertainty increases, though

in some cases at in the ten-thousandth decimal place. Similarly, the Mean Squared Error

(MSE) and Mean Average Error (MAE) increase for all models except Model 3. Interestingly,

the coverage probability increases for Model 5 in the case of β0, bit decreases for all other

models for both β0 and β1.

Table A.10 presents the replicated marginal e�ects provided in Cook et al. (2017). Table

A.11 presents the marginal e�ects, ∂Y/∂X, of Experiment 1 when α1 = .1 and α2 = .9.12

The bias increases for Model 1, Model 3, and Model 5, with the bias changing from positive

to negative for Model 5. There is a slight decrease in the bias for Model 2, and the change

for Model 4 is in the ten-thousandth decimal place. We also �nd that �in circumstances of

one fairly accurate reporting source and one very poor reporting source�the uncertainty for

11That is, relative to Cook et al.'s original results.
12Alternatively, Table A.13 presents both the original simulation results and the adjusted simulation

marginal e�ects side-by-side.
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all models increases, with both the standard deviation and MSE increasing from the original

simulation.

Table A.10: Replication of Marginal E�ects in Simulation Studies (Table 2, p232)

(1) (2) (3) (4) (5)
Naive Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/ Cov Const Pr w/ Cov
Experiment 1: α1 = .35, α2 = .2

∂Y/∂X Bias -0.030 0.011 -0.038 0.002 0.001
SE 0.023 0.049 0.109 0.027 0.028
MSE 0.001 0.002 0.013 0.001 0.001

Table A.11: Marginal E�ects in Extension of Simulation Studies (Table 2, p232)

(1) (2) (3) (4) (5)
Naive Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/ Cov Const Pr w/ Cov
Experiment 1: α1 = .1, α2 = .9

∂Y/∂X Bias -0.038 0.008 -0.044 0.002 -0.007
STD 0.023 0.053 0.115 0.038 0.044
MSE 0.002 0.003 0.015 0.001 0.002

To compare all the models, experiments, and extensions considered here, Figures A.4

and A.5 present the β's and marginal e�ects results for the original simulation where α1 =

.35, α2 = .2 (black), the �rst extension where α1 = .85, α2 = .9 (yellow), and the α1 =

.1, α2 = .9 (blue). The dots are the bias for each model, with the bars representing the range

covered by one standard deviation below and one standard deviation above. The x-axis in

for the left panel in A.4 ranges from -11 to 8, while the right panel ranges from -18 to 14 so

that the di�erences between estimates can be seen more clearly.13 However, this means that

the standard deviations for Model 2 in extension 1 are not reported in the �gure as they

are substantially outside the range.14 Compared to the �rst extension, our second extension

maps closely on to Cook et al.'s original simulation results, both with regards to bias and

13Graphs with the full range are provided in Figure A.6.
14For β0 they range from -47.899 to 44.503; for β1 they range from -334.212 to 310.504.
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uncertainty. The only case where the �rst extension outperforms both the original and the

second extension is β0 in Model 3. In all cases, the second extension has less uncertainty

around the estimates.
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For further reference, Table A.12 and A.13 provide the results of the two simulations

side by side. The original results (α1 = .35, α2 = .2) are presented in the white columns;

extension 2's adjusted simulation results (α1 = .1, α2 = .9) are presented in the gray columns.

Table A.12: Comparison of Simulation Results (Table 1, p231)

Naive Hausman Hausman Multi-source Multi-source
Probit Const Pr w/ Cov Const Pr w/ Cov

(1) (1a) (2) (2a) (3) (3a) (4) (4a) (5) (5a)
β0 = -1 Bias 0.052 0.066 -0.007 -0.001 -1.704 -1.519 0.004 0.006 0.002 -0.029

STD 0.058 0.058 0.092 0.097 8.472 7.57 0.063 0.073 0.064 0.111
SE 0.060 0.06 0.092 0.097 3.336 2.836 0.063 0.074 0.064 0.099
MSE 0.006 0.008 0.009 0.009 74.604 59.549 0.004 0.005 0.004 0.013
MAE 0.063 0.074 0.072 0.076 1.746 1.573 0.050 0.057 0.051 0.08
CP(%) 87.500 83.1 92.177 90.7 95.792 93.681 95.900 94.1 95.700 97.202

β1 = 1 Bias 0.054 0.068 -0.028 -0.025 -1.388 -1.139 -0.007 -0.008 -0.005 0.026
STD 0.066 0.065 0.111 0.12 9.308 8.412 0.075 0.093 0.078 0.124
SE 0.067 0.067 0.110 0.114 3.028 2.484 0.077 0.088 0.079 0.101
MSE 0.007 0.009 0.013 0.015 88.478 71.993 0.006 0.009 0.006 0.016
MAE 0.070 0.079 0.086 0.092 1.563 1.339 0.061 0.073 0.063 0.096
CP(%) 85.700 81.6 92.979 92.6 93.086 91.775 95.500 94.2 95.300 90.754

White columns: Experiment 1 (α1 = .35, α2 = .2). Gray columns: Experiment 1 (α1 = .1, α2 = .9).

Table A.13: Comparison of Marginal E�ects in Simulation Studies (Table 2, p232)

Naive Hausman Hausman Multi-source Multi-source
Probit Const Pr w/ Cov Const Pr w/ Cov

(1) (1a) (2) (2a) (3) (3a) (4) (4a) (5) (5a)
∂Y/∂X Bias -0.030 -0.038 0.011 0.008 -0.038 -0.044 0.002 0.002 0.001 -0.007

STD 0.023 0.023 0.049 0.053 0.109 0.115 0.027 0.038 0.028 0.044
MSE 0.001 0.002 0.002 0.003 0.013 0.015 0.001 0.001 0.001 0.002

White columns: Experiment 1 (α1 = .35, α2 = .2). Gray columns: Experiment 1 (α1 = .1, α2 = .9).
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Figure A.6 provides the estimates for the bias (dots) with the corresponding one standard

deviation below and one standard deviation above (bars). The x-axis is expanded so that

the standard deviations for Model 2 are plotted on the graph.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

−50 −25 0 25
Bias

M
o

d
e

l

Simulation
●
●
●

a1 =.35, a2 = .2
a1 = .85, a2 = .9
a1 = .1, a2 = .9

Bias Comparison for B0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

−200 0 200
Bias

M
o

d
e

l

Simulation
●
●
●

a1 =.35, a2 = .2
a1 = .85, a2 = .9
a1 = .1, a2 = .9

Bias Comparison for B1

Figure A.6: Comparison of Bias for Original Simulation (Black) with Extension 1 (Yellow)
and Extension 2 (Blue) with the full range of the x-axis

Table A.14 provides the results from the �rst extension where α1 = .85, α2 = .9. As

re�ected in the graphs, the results di�er more from the original results than in the case of

the second simulation where α1 = .1, α2 = .9.

In summary, our extensions of Cook et al.'s Monte Carlo experiments provide several

salient insights. First, we �nd that in situations of extreme underreporting in two indepen-

dent sources and constant misclassi�cation processes, the Cook et al. multi-source models

typically outperform plausible alternative models such as naive probits and Hausman esti-

mators. However, in these circumstances, the analyst may be best o� in using Cook et al.'s

multi-source models with constant probabilities, as opposed to the multi-source models that

include covariates in the misclassi�cation stage, as the former multi-source speci�cation per-

forms best in estimating both β0 and β1 under circumstances of severe underreporting in
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Table A.14: Results of Extension 1 (Table 1, p232)

(1) (2) (3) (4) (5)
Naive Hausman Hausman Multi-source Multi-source

Parameter Probit Const Pr w/ Cov Const Pr w/ Cov
Experiment 1: α1 = .85, α2 = .9

β0 = -1 Bias 0.798 -1.698 -0.752 -0.027 -0.364
STD 0.082 46.201 7.957 0.303 1.123
SE 0.086 108.407 2.510 0.274 0.743
MSE 0.644 2135.244 63.809 0.093 1.392
MAE 0.798 2.130 1.942 0.229 0.615
CP(%) 0.000 80.300 30.589 92.593 88.608

β1 = 1 Bias 0.469 -11.854 -2.289 -0.117 -0.157
STD 0.073 322.358 15.710 0.514 1.203
SE 0.079 1172.196 4.596 0.318 0.584
MSE 0.225 103951.402 251.805 0.277 1.470
MAE 0.469 12.095 2.839 0.270 0.533
CP(%) 0.000 82.400 44.614 93.694 91.552

both (i.e., two) sources. Second, and comparing our results across both extensions, we also

intuitively �nd that having one good source and one bad source is preferable to having two

bad sources, but that either scenario is less preferable to having two moderate misclassi�ca-

tion sources. Nevertheless, in each extension, we conclude that the Cook et al. model still

outperforms all binary comparison models with respect to bias. This implies that even with

two bad sources (or with one good source and one bad source), the Cook et al. estimator is

still preferable to analyzing one's binary (collapsed) data with single-source models.
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Application 1: Repression in Africa

Recall that our �rst event data comparison considered the case of state repression in

Africa. As we noted in our main Research Note, our analysis in this regard builds on that

of Cook et al. (2017), who examine the prevalence of reporting bias within the context of

monthly instances of state repression across African countries for the years 2012-2013. The

authors do so with the aid of the Social Con�ict Analysis Database (SCAD; Hendrix et al.,

2012). SCAD is a human coded event dataset that records a wide range of political and social

con�ict under the �who did what to whom (and where/when)� relational event framework.

It provides an ideal application of the misclassi�cation methods developed by Cook et al.

(2017) given its inclusion of an indicator variable recording whether (or not) each coded event

was identi�ed in (i) the Associated Press (AP) or (ii) Agence-France Presse (AFP); and also

given past studies establishing the presence of reporting bias within the SCAD data (Hendrix

and Salehyan, 2015). In light of these advantages, our main Note accordingly replicates Cook

et al.'s study of state repression in Africa, both with the human-coded SCAD data originally

used by the authors and when using a comparably disaggregated set of machine-coded state

repression events derived from the World-Integrated Crisis Early Warning System Dataset

(ICEWS; Boschee et al., 2016).

In this section of our Supplemental Appendix, we seek to provide a more detailed overview

of the data, aggregation decisions, and analyses used within this application. We begin

�rst by reviewing the machine coded event data that are used in the current application.

The ICEWS dataset is a fully machine-coded, CAMEO-based (Schrodt, Gerner and Yilmaz,

2009), event dataset that draws upon approximately 300 electronically available news sources

to code relational events at a global scale for the years 1995-Present. Similar to SCAD,

ICEWS includes an indicator variable that records the speci�c newswire or news agency

that was used to code a given event. This feature allows us to recover and retain only

those ICEWS �state repression� events for African countries that were coded from AFP

and AP. When combined with the SCAD data described above, we are thus able to make
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the controlled comparisons of human and machine coded event data that are reported in

our main Note, for the same news sources, locations, time-frames, source/target-actors, and

event types. After accounting for underreporting issues within our human and machine

coding event data, these comparisons provide us with a sense of the relative quality of

modern human and machine coded event data for political violence within Africa. Below

we describe our Africa repression data � and corresponding data aggregation tasks� in

further detail, before proceeding to a full summary of our multi-source models and related

validation comparisons.

Data Formatting

In this subsection, we �rst brie�y describe the formatted SCAD data used by Cook et al.

(2017). We then discuss how we formatted the machine-coded ICEWS data to match Cook

et al.'s cases of state repression in Africa. The SCAD data used by Cook et al. (2017) record

events for 47 African countries during the years 2012-2013. These event data are aggregated

to the country-month level by Cook et al. (2017), and are then subset to include only (i) those

events initiated by government or pro-government actors and (ii) event types corresponding

to lethal or non-lethal repression. Within the SCAD codebook, repression is de�ned as

�[d]istinct violent event waged primarily by government authorities, or by groups acting

in explicit support of government authority, targeting individual, or `collective individual,'

members of an alleged opposition group or movement� (Hendrix and Salehyan, 2012, 3).

Examples provided by this codebook of nonlethal repression include tear-gas and arrests,

whereas lethal repression must include casualties. Our detailed examination of the nonlethal

repression events included within the SCAD dataset suggests that these events correspond to

material instances of repression (e.g., arrests, the breaking up of protests, etc.) rather than

verbal threats of repression, although some rare instances of nonlethal repression within the

SCAD codebook could be interpreted as a show or threat of force (e.g., deploying tanks).

Returning to Cook et al. (2017), we note that the authors then dichotomize their resulting

country-month SCAD repression event counts to create a primary repression dependent
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variable, set equal to one for African country-months that experienced at least one state

repression event, and zero otherwise. Cook et al. (2017) then create two separate versions

of this dichotomous country-month variable for use in their misclassi�cation-model. The

�rst binary dependent variable equals one for only the African repression cases that SCAD

derived from AP news stories. The second binary dependent variable is set equal to one for

only those repression cases that SCAD derived from AFP-published stories. These are the

SCAD-based repression measures that we use in our multi-source misclassi�cation models

below.

To do so, we downloaded Cook et al.'s formatted SCAD replication data from Harvard's

Dataverse. We then sought to format the World ICEWS data to correspond as closely

as possible to Cook et al.'s African state repression event indicators. Because the default

ICEWS actor and action designations do not perfectly match those used by SCAD, we had

to make a number of aggregation decisions when formatting our ICEWS data. In doing so,

we made every e�ort to be as comprehensive as possible in retaining all relevant source and

target actors for comparison, while also not including any possibly questionable ICEWS-

actor designations for our SCAD comparisons. We �rst retained only those ICEWS events

arising from government actors within African countries for the years 2012-2013.15 We then

retained only those ICEWS events that contained a domestic social actor as a target.16

With these source-target pairings in hand, we subset our remaining ICEWS event data to

only include repression con�ict based CAMEO-based ICEWS events. To do so, we included

all material (i.e., non-verbal) con�ict CAMEO-category coded ICEWS events aside from

�14: PROTEST,� which is a decidedly citizen-directed form of material con�ict, rather than

a realistic category for material acts of violence used by governments for the purposes of

repression. The �nal set of two-digit CAMEO categories included in our ICEWS measure of

15Including source actors designated as �Military,� �Government,� or �Police;� or those ambiguously as-
signed to have a country as a source actor, with no additional details of the nature of that source actor.

16Including target actors designated as �General Population,� �Civilian,� �Social,� �Protestors,� �Mobs,� or
�Popular Opposition.�
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repression are:17

15: EXHIBIT FORCE POSTURE
17: COERCE
18: ASSAULT
19: FIGHT
20: USE UNCONVENTIONAL MASS VIOLENCE

These retained ICEWS events were then divided into two separate (source-speci�c) event

datasets. The �rst ICEWS datset corresponds to only those ICEWS events coded from the

AP. The second ICEWS event dataset corresponds to events coded from AFP newswires.

Importantly, our subsetting of ICEWS into separate event datasets for AP and AFP derived

events retains only a small number of all African state repression events coded by ICEWS.

Speci�cally, for our two years of interest, ICEWS drew from a total of 136 distinct news

sources in recording African state repression events. Of the 46,485 African state repression

events coded by ICEWS (based upon our de�nition of state repression) from these 136

sources for 2012-2013, only 6,726 (14.5%) were coded from AP or AFP sources. As such,

substantial underreporting in our ICEWS data exists by design, and is intended to maximize

comparability of the ICEWS data with the formatted SCAD data used by Cook et al. (2017);

as well as to facilitate the usefulness of the multi-source models described earlier for these

purposes. Any �ndings of underreporting in our �nal ICEWS data should therefore not be

interpreted as indicative of comparable levels of underreporting within the complete ICEWS

dataset.

With the above points in mind, our two news source-speci�c ICEWS event datasets

were aggregated to the country-month level for all African countries.18 Following this, we

dichotomized our AP and AFP newswire sources to correspond to comparable country-month

indicators of state repression in Africa to the SCAD indicators used by Cook et al. (2017).

We then merged the formatted ICEWS and SCAD African repression data together for

17Note that we also included the three digit CAMEO subcategories to each two-digit category as well.
18Note that although duplicate events are a concern in ICEWS, this is not an issue for our aggregated

repression data, given in this case we simply code whether or not an African country-year experienced at
least one repression event.
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Table A.15: Dichotomized Country-Month Summary Statistics (2012-2013)

Mean Stdev Min Max Total Con�ict Cases

SCAD (AP) 0.040 0.197 0 1 44
SCAD (AFP) 0.070 0.255 0 1 76
ICEWS (AP) 0.137 0.343 0 1 149
ICEWS (AFP) 0.298 0.457 0 1 325

Note: N = 1, 092

analysis. Below we brie�y describe a series of univariate and bivariate descriptive statistics

for our merged ICEWS and SCAD data, before presenting our model-based validation tasks.

Dichotomized Repression Measure Comparisons

For summary purposes, this section compares the dichotomized African repression indica-

tors discussed above via descriptive statistics and bivariate comparisons. These comparisons

examine the speci�c 2012-2013 African country-month sample used by Cook et al. (2017).

Cook et al. (2017) have 1,092 cases in their �nal analysis, which they mention corresponds to

47 African countries. Upon closer examination, it appears that the �nal Cook et al. (2017)

analysis sample actually corresponds to 46 African countries (after listwise deletion), with

each generally observed for all 24 months. Table A.15 reports univariate summary statistics

for the state repression indicators contained in this African sample. We generally �nd that

ICEWS records substantially more African country-months as experiencing at least one re-

pression event during our period of analysis. A portion of these discrepancies may be due

to the more �ne grained categories of repression included in the CAMEO coding scheme,

relative to SCAD. Nevertheless, given that both datasets purport to capture both lethal and

nonlethal material repression against domestic actors based on the event action categories

chosen, it would appear that the machine-coded ICEWS data outperform SCAD in their net

coverage of African repression events.

The confusion matrices in Table A.16 allow us to directly compare the (overlapping)

event coverage across news sources, both (i) within the SCAD or ICEWS data (Tables

A.16a-A.16b) and (ii) for each news source across the SCAD/ICEWS datasets (Tables A.16c-

A.16d). Starting with Tables A.16a-A.16b, we �nd that SCAD contains 23 country-month
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instances of state repression that were uniquely identi�ed AP sources, 55 state-repression

country-months that were uniquely identi�ed as such by the AFP, and 21 instances where

AP and AFP jointly recorded a state repression country-month in SCAD. By comparison,

our ICEWS data contain 43 state repression country-months uniquely that were uniquely

derived from the AP, 219 state repression country-months uniquely derived from AFP, and

106 state repression country-months that were jointly recorded in both AP and AFP. The

level of AP-AFP overlap within our ICEWS data's country-month repression indicators is

therefore higher (in absolute terms), when compared to the SCAD data. Our news source

speci�c comparisons (i.e., our comparisons of the same news sources across event datasets)

in Tables A.16c-A.16d reveal that the vast majority of country-months coded as exhibiting

state repression by our AP-speci�c, or AFP-speci�c, sources are distinct within SCAD and

ICEWS data. That is, ICEWS and SCAD appear to be largely identifying di�erent sets of

repressive country-months within Africa for the years 2012-2013. This suggests that there is

substantial underreporting within each source considered here. As demonstrated in extension

1 to our Monte Carlo experiments, severe underreporting in both sources may correspond

to higher levels of bias and uncertainty in one's multi-source estimates than otherwise, yet

these estimates will still be generally preferable to those obtained from non-multi-source

estimators.

Multi-source Model Comparisons

As discussed in our main Note, our full model-based comparisons of the SCAD and

ICEWS African repression data proceed in several steps. We �rst replicate Cook et al.'s

SCAD application using their proposed multi-source estimator. We then repeat this exercise

when using the ICEWS data in place of SCAD. In each case, we follow Cook et al. (2017)

by �rst estimating a set of multi-source constant speci�cations. These speci�cations in-

clude only constant terms within the misclassi�cation stages of the Cook et al. multi-source

estimator, and include the following covariates within the repression stage of the model:
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Table A.16: Dichotomized Country-Month Confusion Matrices for State Repression (2012-
2013)

(a) SCAD (AP) Vs. SCAD (AFP)

AFP

0 1 Total
AP 0 993 55 1,048

1 23 21 44
Total 1,016 76 1,092

Pearson χ2 = 117.674, P < 0.001

(b) ICEWS (AP) Vs. ICEWS (AFP)

AFP

0 1 Total
AP 0 724 219 943

1 43 106 149
Total 767 325 1,092

Pearson χ2 = 141.327, P < 0.001

(c) SCAD (AP) Vs. ICEWS (AP)

ICEWS

0 1 Total
SCAD 0 924 124 1048

1 19 25 44
Total 943 149 1,092

Pearson χ2 = 72.526, P < 0.001

(d) SCAD (AFP) Vs. ICEWS (AFP)

ICEWS

0 1 Total
AFP 0 745 271 1,016

1 22 54 76
Total 767 325 1,092

Pearson χ2 = 66.622, P < 0.001

GDP per capitat−1, Populationt−1, and Democracyt−1.
19 For each dependent variable (i.e.,

SCAD and ICEWS), we then estimate multi-source with covariates speci�cations that in-

clude GDP per capitat−1, Populationt−1, and Democracyt−1 in both the repression and

misclassi�cation stages of the Cook et al. multi-source estimators, while also adding AFP

Reports and AP Reports20 to the relevant misclassi�cation stages of these estimators. These

models appear in Table A.17-A.18.

Beginning with Table A.17, we �nd that the estimated e�ects of GDP per capitat−1,

Populationt−1, Democracyt−1 on repression are remarkably similar across our SCAD and

ICEWS speci�cations. The most notable di�erence across our SCAD and ICEWS speci-

�cations is that of GDP per capitat−1, which is positive and not statistically signi�cant

in the SCAD multi-source constant speci�cation, but positive and statistically signi�cant

(p < 0.01) in the ICEWS multi-source constant speci�cation; implying that more developed

19The operationalizations of each variable are described in Cook et al. (2017), who expect
GDP per capitat−1 and Democracyt−1 to each be negatively related to repression, but Populationt−1

to be positively associated with repression.
20These measures were collected by Cook et al. (2017), and report the number of non-con�ict AFP and

AP news reports for each country under analysis.
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African countries are more likely to exhibit monthly repression.21 However, in turning to

the SCAD and ICEWS multi-source with covariates speci�cations in Table A.17, we now

more �nd that GDP per capitat−1 is negative and statistically signi�cant (p < 0.01) in each

case. This intuitively suggests that development is associated with less monthly repression,

thereby underscoring the value-added of Cook et al.'s multi-source with covariates model

over its multi-source constant counterpart. Note however that, given the likelihood of high

underreporting among all sources examined here, and our Monte Carlo analyses of such

circumstances, our multi-source estimates will possibly be fairly imprecise.

For Populationt−1, we �nd a positive and statistically signi�cant e�ect (p < 0.01) within

both SCAD models, and in both ICEWS models, in Table A.17. This implies that more

populous countries are more likely to exhibit one or more repression events in any given

month, even after correcting for reporting bias issues. This consistency in estimated e�ects�

alongside those for GDP per capitat−1 in the multi-source with covariates speci�cation

above�underscores the comparability of our estimates repression-determinants across both

human- and machine-coded event data, when aggregated to the country-month level. Our

�ndings for Democracyt−1 reinforce these conclusions, as the coe�cient estimates for this

variable are negative and statistically signi�cant (p < 0.01) in each SCAD and ICEWS spec-

i�cation in Table A.17. Intuitively this �nding suggests that monthly instances of repression

are signi�cantly less likely in democracies. Altogether, our Table A.17 �ndings hence strongly

indicate that using machine coded event data in place of human coded data for reporting-bias

adjusted analyses of African repression yields comparable theoretical �ndings�especially in

the multi-source with covariates speci�cation context.

Table A.18 o�ers additional evidence for consistency in estimates derived from machine-

and human coded event data. This table reports the AP- and AFP-misclassi�cation equation

estimates for the models reported in Table A.17. Again the most noticeable di�erences in

21For reference, we note that this variable was positive but not statistically signi�cant in Cook et al.'s
naïve probit speci�cation, and was found to be positive and statistically signi�cant within expanded analyses
of SCAD-based repression in Africa (Hendrix and Salehyan, 2016).
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Table A.17: Models of Repression in Africa 2012-2013

SCAD ICEWS SCAD ICEWS
(Human-Coded) (Machine-Coded) (Human-Coded) (Machine-Coded)
Multi-Source Multi-Source Multi-Source Multi-Source
Constant Pr Constant Pr W/ Cov W/Cov

GDPpct−1 0.021 0.257 -0.292 -0.534
(0.072) (0.048) (0.145) (0.185)

Popt−1 0.458 0.500 0.330 0.859
(0.063) (0.043) (0.095) (0.121)

Demot−1 -0.756 -0.385 -0.819 -1.488
(0.172) (0.105) (0.315) (0.405)

Constant -8.562 -9.904 -3.857 -8.159
(1.160) (0.837) (2.063) (1.846)

Note: N = 1, 092. Values in parentheses are standard errors.

our SCAD- and ICEWS-based estimates arise in the case of GDP per capitat−1. Looking

speci�cally at the multi-source with covariates speci�cations, we �nd that more developed

countries are signi�cantly (p < 0.10) less likely to exhibit reporting bias in the AP equation

of the SCAD speci�cation, but that GDP per capitat−1 is not statistically signi�cant in the

AFP equation of the SCAD speci�cation. By comparison, GDP per capitat−1 is negative

and statistically signi�cant in both the AP and AFP equations of the ICEWS-based multi-

source with covariates misclassi�cation stage. The coe�cient estimate for Populationt−1

is consistently negative across the SCAD and ICEWS misclassi�cation equations (implying

that more populous countries are less likely to exhibit reporting bias), though it is not

statistically signi�cant within the SCAD AFP equation. Democracyt−1 is not statistically

signi�cant in any of the SCAD or ICEWS misclassi�cation equations. Finally, in all cases, we

�nd that AP Reports and AFP Reports are consistently negative and statistically signi�cant

(p < 0.01) predictors of reporting bias. For a given African country-month, and no matter

whether one examines human- or machine-coded event data, this implies that higher levels

of (nonviolent) media attention are associated with lower likelihoods of reporting bias for

repression events.22

22Although the substantive magnitudes of the coe�cient estimates on the AP and AFP Reports variables
are smaller in the case of the ICEWS models. This may imply that reporting biases are less severe in
the ICEWS context, and(or) that the total AP/AFP media attention received by a country is simply less
predictive of the speci�c reporting bias issues found within the ICEWS data, relative to the SCAD data.
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Table A.18: Models of Reporting Bias in Africa 2012-2013

SCAD ICEWS SCAD ICEWS
(Human-Coded) (Machine-Coded) (Human-Coded) (Machine-Coded)
Multi-Source Multi-Source Multi-Source Multi-Source
Constant Pr Constant Pr W/ Cov W/Cov

Pr(Misclassi�cation AP)
GDPpct−1 . . -0.280 -0.215

(0.168) (0.067)
Popt−1 . . -0.268 -0.287

(0.106) (0.059)
Demot−1 . . -0.386 0.182

(0.416) (0.137)
AP Reports . . -0.033 -0.009

(0.008) (0.002)
Constant 0.558 0.412 7.951 7.244

(0.148) (0.070) (2.073) (1.098)
Pr(Misclassi�cation AFP)

GDPpct−1 . . -0.203 -0.452
(0.172) (0.070)

Popt−1 . . -0.057 -0.122
(0.121) (0.066)

Demot−1 . . 0.350 0.108
(0.402) (0.136)

AFP Reports . . -0.023 -0.011
(0.006) (0.003)

Constant 0.005 -0.650 3.332 5.470
(0.181) (0.103) (2.359) (1.066)

Note: N = 1, 092. Values in parentheses are standard errors.
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Validation

The above analyses suggest that machine and human coded event data will yield similar

theoretical �ndings regarding the determinants of country-month African repression. Yet

these analyses do not reveal whether the resultant predictions obtained from these models of

African repression are comparable across our ICEWS and SCAD-based models. To evaluate

this question, one needs reliable GSRs on African repression. In this case, we turn to the

latent-country year measures of human rights protection estimated by Fariss (2014). As

Bagozzi and Berliner (2017) note, �[w]ile there is no perfect variable to capture objective

`on-the-ground' human rights conditions, the most advanced option at present is Fariss's

(2014) dynamic latent human rights protection measure� (14). Indeed, Fariss (2014) uses a

variety of standards-based human rights sources23 and event based repression data sources24

within a dynamic item response theory (IRT) model to recover a latent measure of repression

that (i) minimizes measurement error (e.g., reporting bias) issues associated with any speci�c

dataset and (ii) accounts for changing standards of human rights accountability over time.

Given the above points, we believe this latent measure to o�er the best opportunity for

validation of our models' predictions of repression.

To validate our ICEWS and SCAD based multi-source models in this manner, we specif-

ically use the latent mean of countries' human rights scores for our sample from Fariss

(2014, Version 2.4). Note that, on this measure, higher values imply better human rights

performance (i.e., less repression). We then derive the in-sample predicted probabilities

of repression for each country-month in our Africa sample from our (SCAD and ICEWS-

based) repression stage estimates, separately for both the multi-source with covariates and

multi-source constant speci�cations discussed above.25 As both Fariss' latent human rights

measure and our model-derived predicted probabilities are continuous, we examine the Pear-

23I.e., sources coded from annual Amnesty International and State Department human rights reports.
24Which are coded from a wide variety of historical, newspaper, newswire, and online sources, but which

exclude the SCAD and ICEWS data used here.
25We use the repression stage estimates in this case as they provide us with our multi-source models

estimated e�ects of each relevant covariate on repression, after accounting for reporting bias.
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son product-moment correlations between our model predictions and Fariss's latent measure,

and these correlations' associated t-values. We expect a negative correlation between our

predicted probabilities and Fariss' measure, given that higher values on the former imply a

higher likelihood of repression, whereas higher values on the latter imply less overall repres-

sion.

Our correlation results appear in Table A.19. Beginning with our multi-source constant

speci�cations, we �nd that our SCAD- and ICEWS based models exhibit highly negative

and statistically signi�cant correlations with Fariss's measure. Moreover, each predicted

probability exhibits a very similar correlation with Fariss's latent human rights protection

scores: of -0.535 in the case of SCAD and -0.520 in the case of ICEWS. Thus, multi-source

constant human- and machine-coded repression data yield predictions that are near-identical

in their association with a set of plausible GSR data, although the anticipated correlation is

slightly stronger in the case of our human-coded event data. Our �nding for the multi-source

with covariates case in Table A.19 underscore these conclusions. We �nd in this case that the

inclusion of source speci�c misclassi�cation predictors has improved the negative correlations

between our predicted probabilities of repression and Fariss's latent human rights protection

scores. Moreover, both our SCAD- and ICEWS-based predictions again yield near-identical

correlations with these latent GSRs, of -0.593 in the case of SCAD and -0.590 in the case of

ICEWS.

These similarities suggest that human and machine coded event data have comparable

levels of external validity. As we discuss in the introduction to our Note, and in Bagozzi

et al. (2016), this form of external validity is a necessary component to event data validation.

Whereas much past research has focused on the internal validation of machine event data (i.e.,

the comparison of machine codings of speci�c texts to comparable human-codings of that

same text), our analysis has thus provided one of the �rst external validations of machine

coded event data�both relative to human coded event data and relative to an external

(latent) gold standard source. In doing so, we �nd good reason to believe that machine
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Table A.19: Correlation Coe�cients with Latent Human Rights Protection Scores

Pearson r t-value

SCAD Pr(Repression) with Constant Pr -0.535 -20.883

ICEWS Pr(Repression) with Constant Pr -0.520 -20.121

SCAD Pr(Repression) with Covariates -0.593 -24.299

ICEWS Pr(Repression) with Covariates -0.590 -24.113

Note: N = 1, 092

coded event data exhibits comparable external validity to human coded data.

Application 2: Colombian Human Rights Violations

Our second application examines instances of rebel and paramilitary violence against

civilians in Colombia during the years 2000�2009. As mentioned brie�y in the main paper,

there are several compelling reasons for our focus on the Colombia case, and on violence

against civilians. For one, the measurement of violence against civilians in Colombia has

been an ongoing area of substantive and methodological focus for well over 30 years (Cin-

granelli and Pasquarello, 1985; Restrepo, Spagat and Vargas, 2006; CINEP, 2008; Ball et al.,

2008; Lum et al., 2010). The prominence and scope of this body of research allows us to

(1) benchmark our validation results, (2) substantively identify a number of sub-sample

comparisons to isolate sources of reporting bias, and (3) ensure that our contributions have

both scholarly and policy relevance. Unlike our analysis of repression in Africa above, this

Colombia analysis additionally a�ords us the ability to examine reporting bias issues, and to

validate machine and human event data, at �ne-grained subnational levels. Subnational val-

idation of this sort is likely to be of high interest to future researchers in this area, given the

increasing shift towards grid-level (and/or municipality-level) analyses of con�ict processes

among quantitative con�ict scholars.

Thanks in large part to previous research on violence against civilians, our focus on the

Colombia case also ensures that�unique to this second application�we have access to a set
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of gold standard human rights violation (HRV) events through Colombia's Centro de Inves-

tigación y Educación Popular (CINEP; CINEP, 2008). The CINEP's HRV data are coded

by event identi�cation numbers attached to the o�cial geopolitical division of Departments

and Municipalities established by the Departamento Administrativo Nacional de Estadís-

tica (DANE). Each event reports the main participating actors in a hierarchical structure,

with the victims of an event recorded by their number of deaths, injuries, disappearances,

kidnappings, threats, attempts, arbitrary detention and forced recruitment. Each event is

further classi�ed according to more general categorical indicators for the type of HRV and

type of civilian victimization. Importantly, the CINEP HRV data contain comprehensive

information on rebel and paramilitary-perpetrated violence against civilians in Colombia for

the years 1990-2009 on a monthly basis. These relational data � which record individual

instances of human rights abuses at the municipality-month level � are unlikely to exhibit

the reporting bias problems that are common to global (human- and machine-coded) event

datasets. CINEP has been documenting the con�ict in Colombia for over forty years, and

has created an archive that is curated by librarians with an extensive collection of (Spanish

language) national and regional Colombian newspapers and associated reports. This col-

lection is the basis for CINEP's coding of HRV data, in addition to eye-witness and victim

testimony, reports from NGOs, and government sources. As such, CINEP provides us with a

GSR validation source that is generally unavailable for many other country-speci�c con�ict

applications.

A �nal justi�cation for our choice of the Colombia case relates to the availability of

overlapping human- and machine-coded event datasets for the purposes of comparison. The

presence of a contemporary civil con�ict in Colombia, and the recent growth of global event

datasets more generally, together provide us with two well-documented human and machine-

coded event datasets�the (machine coded) ICEWS data described above and the (human

coded) Geo-located Event Dataset (GED; Sundberg and Melander, 2013)�for this speci�c

con�ict. Importantly for our speci�c validation goals, ICEWS and GED (i) each contain
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variables delineating the news source(s) that each dataset used to code a given event and

(ii) exhibit considerable overlap in the speci�c news sources that each event dataset used

to code Colombian HRV events. This news source overlap, as outlined for our African

repression analysis above, allows us to use the aforementioned multi-source estimators to

make subnational external validation comparisons of human and machine coded event data

for the Colombian con�ict. As noted in our Research Note's introduction26 this form of

external validation�along with internal validation�is a necessary component to the broader

validation of machine coded event data.

Data Formatting

To perform these validation comparisons, we �rst must aggregate and combine the GED,

ICEWS, and (CINEP) validation data for the case of Colombian HRVs. Note that our goals

in this regard will ultimately be to compare the GED and ICEWS Colombian HRV data

directly with the aid of the multi-source estimators described in our main Research Note

and above. After doing so, we will use our held-out CINEP events to determine whether any

discrepancies that arise in our misclassi�cation-corrected GED and ICEWS HRV predictions

can be attributed to better overall ground truth within the ICEWS (versus GED) data.

However, before presenting these model-based comparisons in full, we must �rst discuss the

formatting and aggregation choices that we use for our ICEWS, CINEP, and GED datasets.

Following this, we present a series of descriptive statistics for our combined HRV data, before

�nally turning to our model-based comparisons and validation e�orts.

Combining our ICEWS, GED, and CINEP datasets for the case of Colombian HRVs

is not without its challenges. CINEP, ICEWS, and GED each exhibit di�erent levels of

spatio-temporal aggregation, have distinct de�nitions of what ultimately comprises an HRV

event, and contain unique criteria for what constitutes HRV perpetrators and victims. These

di�erences guarantee that any e�ort to combine all three datasets will have a some degree of

error. What follows is a detailed discussion of our e�orts to format and combine each of our

26And in Bagozzi et al. (2016).
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event datasets in a manner that ensures that our retained HRV events are as comparable as

possible across all three sources.

We start in this case by �rst describing our validation data. Our raw CINEP HRV data

are aggregated to the municipality-year level, for the years 1990-2009. This sample-frame

limits the end-year of our analysis to 2009. In addition, a majority of the municipality-year

speci�c covariates that we include in our model-based validation e�orts further below begin in

the year 2000, which accordingly limits our sample's start-year to 2000. Our speci�c CINEP

HRV data include directed rebel and paramilitary (source) to citizen (target) violence events.

Directed dyad interactions of this sort (i) facilitate the comparison of the events with the

directed dyadic event information contained in ICEWS and GED, and (ii) ensure that our

analysis closely parallels the most common approach to event data coding and analysis within

the �eld (i.e., dyadic relational interactions). The latter quality is a correspondence that

many past event data validation experiments have ignored (King and Lowe, 2003). Within

CINEP's HRV data, source actors are designated by the speci�c rebel or paramilitary group

perpetrating an HRV event, and the target of each event can more simply be inferred to

be a civilian or group of civilians. To combine these validation data with our anticipated

event datasets, we �rst collapse CINEP's recorded rebel-perpetrated HRV events to the

unique event-ID level. We then subset CINEP's events to only include actual instances

of �material� human rights violations, rather than both material and verbal human rights

violations.27

For the 2000-2009 period, we next aggregate all remaining CINEP HRV events to the

municipality-year level.28 We then dichotomize these municipality-year HRV event counts

for use in our multi-source model-based validation e�orts. As such, our �nal CINEP variable

is equal to one for any municipality-year that experienced a rebel or paramilitary HRV, and

zero otherwise. With the formatted CINEP HRV data in hand, we next formatted the

27That is, we remove all non-material violence events (e.g., threats), including categories such as `Threat-
ens', `Recruitment', and `Collective Threats,' which altogether constituted 75% of all rebel-perpetrated HRV
events in CINEP for our years of analysis.

28Municipalities are Colombia's second administrative unit, with 1,102 municipalities in total.
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World ICEWS data to correspond as closely as possible to our �nal CINEP events. As

alluded to above, the actor and action designations within ICEWS do not precisely match

those used by CINEP. In light of this, we again made every e�ort to be as comprehensive

as possible in retaining all relevant source and target actors for comparison, while also not

including any possibly questionable actor designations for our purposes. Within ICEWS,

this entailed our treatment of actors designated as �rebel,� �separatist,� �insurgent,� and

�unidenti�ed sources� as source actors, and �general population,� �civilian,� and �social� as

target actors. After identifying events occurring in Colombia between these source and

target actors, we retained and aggregated (over location and year) only those events with

the following CAMEO category 18 (ASSAULT) codes:

180: Use unconventional violence, not speci�ed below
181: Abduct, hijack, or take hostage
182: Physically assault, not speci�ed below
1821: Sexually assault
1822: Torture
1823: Kill by physical assault
183: Conduct suicide, car, or other non-military bombing, not speci�ed below
1831: Carry out suicide bombing
1832: Carry out car bombing
1833: Carry out roadside bombing
184: Use as human shield
185: Attempt to assassinate
186: Assassinate

Before aggregating these ICEWS events, we applied a de-duplication criterion to ensure

that only one event(-type) was recorded per day, source, and latitude-longitude coordinate.29

After implementing this de-duplication routine, we retained only those events that were

recorded by ICEWS from the following two newswire sources: Reuters and the Spanish

international newswire agency Agencia EFE. These two newswire sources were chosen for

comparison because they (i) encompassed a substantial number of ICEWS' recorded HRV

29While ICEWS does very mild de-duplication at the coding stage�e�ectively eliminating duplicate stories
bearing the same publisher, headline, and date�it still allows for some duplicate stories given (e.g.,) variation
in headlines, which can lead to over-reporting of many events (Schrodt, 2015, 12).
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events and (ii) similarly encompass a substantial number of the HRV events within the GED

data discussed below. For each newswire speci�c sample of HRV events, we then aggregated

that newswire source's ICEWS HRV events to the municipality-year level, and created a

dichotomized indicator of these ICEWS-derived HRV event-measures for both Reuters-coded

events and EFE-coded events. We next matched our ICEWS' (and our subsequent event

datasets') events to maps of Colombia's municipalities via latitude-longitude coordinates. To

do so, we �rst standardized the spatial reference of all datasets by projecting event point data

of each event onto the World Geodetic Survey (WGS84) geographic coordinate system30 via

latitude-longitude coordinates. All event data points were then translated to, and merged

to our municipalities and departments based upon, a two-dimensional Mercator Auxiliary

Sphere.31

Importantly, the above ICEWS data aggregation decisions retained only a small subset

of all ICEWS HRV events for Colombia. At the Colombian municipality-year level for the

years 2000-2009, a total of 63 distinct news stories were identi�ed as containing relevant

HRV events within our ICEWS data. The EFE and Reuters-speci�c events that we retained

from this full sample constituted only 1,738 (41%) of all 4,275 HRV events recorded by

ICEWS from all relevant news sources. As was the case for our African repression analysis,

our retained Colombian ICEWS HRV events exhibit underreporting by design. While this

maximizes our abilities to (i) leverage the misclassi�cation-estimators discussed earlier and

(ii) compare our ICEWS �ndings to the GED data and �ndings discussed below; it ensures

that our resultant events will poorly approximately our gold standard CINEP cases (which

are coded from a multitude of sources) relative to what could be obtained from the full

ICEWS data. Note that�based on our Monte Carlo extension 1�this also again implies

that the multi-source models considered below will potentially yield biased and imprecise

30Which uses three-dimensional spherical surface to de�ne each point location on the earth.
31We speci�cally used the WGS 1984 Web Mercator Auxiliary Sphere projected coordinate system. This

was the best projection available for our application because it uses a spheroid, rather than perfect sphere,
for its earth model, thereby making it more e�cient in aligning local data. By matching the projection
and geographic coordinate system we are able to say with con�dence that the locations are properly located
within our study area.
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estimates for the models below; yet these estimates can still be anticipated to be superior to

those obtained from single source (e.g., probit) models.

We next formatted our GED dataset in a comparable manner to the ICEWS formatting

steps described above. Recall that GED is a (near-global) human-coded event dataset that

draws on both news(wire) sources and NGO reports for its coding of individual events. For

the Colombia case, we retained all nonstate (rebel or paramilitary) perpetrated HRVs against

civilians (i.e., �one-sided violence�) within the GED data for the years mentioned above, while

taking care to exclude any HRVs perpetrated explicitly by Colombian drug cartels. We then

split these events into two datasets that separately recorded (i) the GED based HRVs that

were coded from stories appearing in Reuters, and (ii) the GED HRVs that were coded

from stories appearing in EFE. As above, this retains a small subset of the total Colombian

HRVs included in GED: only 48% of all GED Colombian HRVs were coded from these two

sources for the 2000-2009 period. With this caveat in mind, our two GED datasets were

then merged to Colombian municipality-year maps for the 2000-2009 period, while taking

care to omit any GED events whose levels of geocoding accuracy were determined to be

too ambiguous to �t within this particular administrative level. Finally, we dichotomized

these GED HRV events, for both newswire-speci�c samples, at the municipality-year level.

After our formatting and aggregation tasks were complete, we combined all HRV measures

discussed above into a single municipality-year dataset covering the years 2000-2009.

Dichotomized HRV Measure Comparisons

This subsection compares our dichotomized HRV indicators using summary statistics,

bivariate comparisons, and binary classi�cation criteria. Turning �rst to Tables A.20-A.23,

we �nd that our event datasets (i.e., ICEWS and GED) do a fairly poor job in accurately

identifying the municipality-years that experience at least one HRV violation according to

CINEP. Recall, however, that the retained ICEWS and GED HRV events only correspond

to a small subset of all HRV events recorded in each of these datasets. In order to conduct a

meaningful comparison of the validity of machine and human coded event data, we retained
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only those events within each dataset that were recorded from Reuters and EFE.

With the above points in mind, the confusion matrices presented in Table A.21 indicate

that comparisons of our dichotomized (news source-speci�c) event datasets to CINEP at the

municipality-year level yield more false positives than true positives within ICEWS (Reuters

and EFE) and the EFE-speci�c GED data. The Reuters-speci�c GED data exhibits slightly

more true positives than false positives. For both ICEWS and GED, the EFE news source

identi�es more CINEP events than does Reuters (albeit with more false positives as well).

Likewise, GED exhibits a slight edge over ICEWS in terms of total true positives, whereas

ICEWS identi�es more total events for both Reuters (117 > 81) and EFE (228 > 161) than

does GED. Hence, taken together, the confusion matrices presented in Table A.21 suggest

that the Reuters and EFE events that are recorded within ICEWS and GED are each fairly

similar to one another in their (fairly poor) aggregate approximations of our gold standard

CINEP HRVs.

The confusion matrices in Table A.22 allow us to more directly compare our news source-

speci�c event datasets to one another. The confusion matrices in this table speci�cally

compare the (i) Reuters-speci�c ICEWS data to the EFE-speci�c ICEWS data (Table A.22a),

(ii) the Reuters-speci�c GED data to the EFE-speci�c GED data (Table A.22b), (iii) the

Reuters-speci�c HRVs across ICEWS and GED (Table A.22c), and (iv) the EFE-speci�c

HRVs across ICEWS and GED (Table A.22d). Of most relevance to our anticipated multi-

source models, Table A.22a indicates that our two news source-speci�c ICEWS datasets each

uniquely code 191 (EFE) and 80 (Reuters) municipality-years as experiencing at least one

HRV; and jointly code 37 municipality-years as experiencing at least one HRV. For the GED's

HRVs (Table A.22b) we �nd 143 (EFE) and 63 (Reuters) uniquely-identi�ed municipality-

years, and 18 municipality-years jointly coded as experiencing at least one HRV by both

Reuters and EFE. Among both GED and ICEWS, we thus have high levels of reporting

bias and low levels of two-source overlap, since each source appears to capture a relatively

low number of that dataset's other source's municipality-year HRVs, and ostensibly, of HRVs
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overall. Per our Monte Carlo extension one, this leads us to anticipate relatively imprecise

estimates for the various probit and multi-source models assessed below.

Tables A.22c-A.22d suggest that for each news source (i.e., Reuters or EFE) the HRV

events recorded in ICEWS and GED are largely distinct in their identi�ed municipality-years

(with only 11-24 cases of overlap). Hence, while the (Reuters and EFE-speci�c) ICEWS and

GED data each appear to contain a similar number of events, our source-speci�c event

datasets exhibit substantial disagreement in which municipality-years experience HRVs, and

which do not, for Colombia during the years 2000-2009.

Our �nal set of pairwise comparisons again treats the dichotomized CINEP HRV data

as �truth,� and calculates a series of classi�cation statistics (de�ned on page 50 below) to

evaluate how well each source-speci�c event dataset recovers our CINEP HRV municipality-

year cases. These classi�cation statistics are reported in Table A.23 and slightly favor GED

over ICEWS (and EFE over Reuters) with respect to the accurate classi�cation of the (di-

chotomized) CINEP data. Even so, we can see in Table A.23 that all news source speci�c

event datasets perform poorly in classifying actual CINEP HRVs (via sensitivity), but gener-

ally perform well on speci�city and overall accuracy due to the preponderance of zero-cases

(i.e., non events) across all datasets. If we consider CINEP as our GSRs, these results accord-

ingly suggest that the Reuters and EFE-speci�c events contained in ICEWS and GED32 are

individually fairly poor approximations of HRV �truth� at the municipality-year level. Each

comparison dataset also appears to exhibit somewhat distinct de�ciencies in these regards.

However, on the whole, the Reuters and EFE-speci�c HRV events contained in ICEWS and

GED appear to be fairly similar in their (in)abilities to accurately classify our CINEP HRV

cases at the municipality-year level of aggregation.

32Which, again, are only a small fraction of all Colombia HRVs recorded in these two datasets, given the
many additional news sources that each dataset codes, but which we omit here.
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Table A.20: Dichotomized Municipality-Year Summary Statistics (2000-2009)

Mean Stdev Min Max Corr w/ CINEP Total Con�ict Cases

CINEP 0.092 0.289 0 1 1.000 1,029
ICEWS (Reuters) 0.010 0.102 0 1 0.062 117
ICEWS (EFE) 0.020 0.141 0 1 0.097 228
GED (Reuters) 0.007 0.085 0 1 0.130 81
GED (EFE) 0.014 0.119 0 1 0.149 161

Note: N = 11, 220 (11,22 municipalities × 10 years)

Table A.21: Dichotomized Municipality-Year Confusion Matrices (CINEP Comparisons)

(a) CINEP Vs. ICEWS (Reuters)

ICEWS

0 1 Total
CINEP 0 10,105 86 10,191

1 998 31 1,029
Total 11,103 117 11,220

Pearson χ2 = 42.601, P < 0.001

(b) CINEP Vs. ICEWS (EFE)

ICEWS

0 1 Total
CINEP 0 10,028 163 10,191

1 964 65 1,029
Total 10,992 228 11,220

Pearson χ2 = 104.475, P < 0.001

(c) CINEP Vs. GED (Reuters)

GED

0 1 Total
CINEP 0 10,153 38 10,191

1 986 43 1,029
Total 11,139 81 11,220

Pearson χ2 = 188.893, P < 0.001

(d) CINEP Vs. GED (EFE)

GED

0 1 Total
CINEP 0 10,102 89 10,191

1 957 72 1,029
Total 11,059 161 11,220

Pearson χ2 = 247.811, P < 0.001

Table A.22: Dichotomized Municipality-Year Confusion Matrices (Event Data Comparisons)

(a) ICEWS (EFE) Vs. ICEWS (Reuters)

EFE

0 1 Total
Reuters 0 10,912 191 11,103

1 80 37 117
Total 10,992 228 11,220

Pearson χ2 = 520.064, P < 0.001

(b) GED (EFE) Vs. GED (Reuters)

EFE

0 1 Total
Reuters 0 10,996 143 11,139

1 63 18 81
Total 11,059 161 11,220

Pearson χ2 = 249.271, P < 0.001

(c) ICEWS (Reuters) Vs. GED (Reuters)

GED

0 1 Total
ICEWS 0 11,033 70 11,103

1 106 11 117
Total 11,139 81 11,220

Pearson χ2 = 124.283, P < 0.001

(d) ICEWS (EFE) Vs. GED (EFE)

GED

0 1 Total
ICEWS 0 10,855 137 10,992

1 204 24 228
Total 11,059 161 11,220

Pearson χ2 = 136.005, P < 0.001
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Table A.23: Dichotomized Municipality-Year Classi�cation Statistics (2000-2009)

False Positive Rate False Negative Rate Sensitivity Speci�city F1 Score Total Accuracy

ICEWS (Reuters) 0.01 0.97 0.03 0.99 0.05 0.90
ICEWS (EFE) 0.02 0.94 0.06 0.98 0.10 0.90
GED (Reuters) 0.004 0.96 0.04 0.996 0.08 0.91
GED (EFE) 0.01 0.93 0.07 0.99 0.12 0.91

Note: N = 11, 220 (11,22 municipalities × 10 years)
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Multi-source Model Comparisons

Our model-based comparisons of the GED and ICEWS Colombian HRV data proceed

in a similar fashion to the African repression analysis summarized above. Here we estimate

three speci�c models for each HRV dependent variable (i.e., for our GED and ICEWS-derived

HRV dependent variables): (i) a standard probit model, (ii) a multi-source constant model

and (iii) a multi-source with covariates model. For the HRV stage of each model, we include

three plausible (municipality-year level) variables known to a�ect rebel and paramilitary

violence within the context of Colombia (Angrist and Kugler, 2008; Richani, 2013; Holmes

and Gutiérrez de Piñeres, 2014; Ibánez, 2009; Holmes et al., 2017): (logged) population,33

the percentage of a municipality with forest cover (as a proxy for both remoteness and for the

types of jungle-cover that are conducive to rebel and paramilitary operations in Colombia),34

and the percentage change in population in a given municipality from the previous year to

the present year (to approximate migration pressures).35 The two latter percentage-based

variables are measured on proportion (i.e., 0-1) scales. We also add each of these measures

to the Reuters and EFE-speci�c misclassi�cation stages of our multi-source with covariates

models, along with an additional measure of remoteness: the logged distance from each

municipality's centroid to the capital Bogotá.36

As alluded to, our rationale for including the latter distance variable, along with percent-

age forest cover, in the misclassi�cation stage of our model follows from the notion that more

remove locations may receive less press attention, and lower recognition of HRVs. Indeed,

33To construct municipality-year level estimates of Colombia's population 2000-2009, municipality level
population data were obtained for the years 1985, 1993, and 2005 from Colombia's Departamento Adminis-
trativo Nacional de Estadística (DANE):https://www.dane.gov.co/index.php/estadisticas-por-tema/
demografia-y-poblacion/series-de-poblacion. These data were then interpolated to the yearly level
using natural splines with pivot information �tted on June 30th, 1985, 1993 and 2005.

34Derived from the Consortium for Spatial Information's digital elevation model.
35Population change is based on percentage changed that were derived the same DANE estimations men-

tioned above, for the years 2000-2009.
36To construct this measure, we converted each municipality polygon's centroid x- (longitude) and y-

coordinates (latitude) into a new shape�le of centroid points. Using a generally accepted latitude-longitude
point for Bogotá, we next measured the distance in meters from each centroid point to Bogotá to determine
the �nal distance of municipality and department to the capital. We then transformed these measures by
taking its natural log to address issues of skewness, and in order to ensure reasonably scaled coe�cient
estimates.
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there is ample existing evidence to suggest that issues of reporting bias and non-detection in

media-derived become far more severe as one moves into the more sparsely populated and

remote areas of a con�ict-a�icted country (Davenport and Ball, 2002; Weidmann, 2015). We

anticipate that increases in a municipality's distance from Bogotá (and forest cover) will lead

to higher reporting biases. We also draw upon this same rational in justifying our inclusion

of logged population and population change in the misclassi�cation stages of our multi-source

with covariates model�as well as upon the Africa analysis in Cook et al. (2017), and our

extensions of this analysis above, which reveal that population is generally a negative and

statistically signi�cant predictor of misclassi�cation in the African repression case.

The results from all models mentioned above appear in Tables A.24-A.25. Beginning

with the HRV-outcome results in Table A.24, we �nd stable results for virtually all coef-

�cient estimates across our SCAD and ICEWS speci�cations. Forest cover is consistently

positive across all speci�cations, suggesting increased forest cover to be associated with a

higher likelihood of a HRV at the municipality-year level, though it is not statistically sig-

ni�cant in the standard probit speci�cations. Intuitively, logged population is consistently

positive and statistically signi�cant across all HRV models and event data analyzed in Ta-

ble A.24, though its estimated e�ects attenuate in size as one moves to the more speci�ed

multi-source with covariates models. Finally, population change exhibits perhaps the most

notable change in Table A.24, wherein we �nd population change to be negative but not

statistically signi�cant in the probit and multi-source constant models, but positive in the

multi-source with covariates models.37 Together the results in Table A.24 suggest�that no

matter whether one chooses to use a probit, multi-source constant model, or multi-source

with covariates model�the �ndings obtained (in terms of signi�cance, sign, and magnitude)

will be similar when using either human- or machine-coded HRV event data.

37And statistically signi�cant at the p < .10 level in the case of the ICEWS multi-source with covariates

model.
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Table A.24: Models of HRVs in Colombia 2000-2009

GED ICEWS GED ICEWS GED ICEWS
(Human-Coded) (Machine-Coded) (Human-Coded) (Machine-Coded) (Human-Coded) (Machine-Coded)

Probit Probit Multi-Source Multi-Source Multi-Source Multi-Source
Constant Pr Constant Pr W/ Cov W/Cov

Forest 0.621 0.361 0.783 0.412 3.437 1.018
(0.129) (0.124) (0.174) (0.144) (0.657) (0.443)

Log Pop. 0.312 0.391 0.401 0.447 0.235 0.270
(0.024) (0.022) (0.039) (0.029) (0.061) (0.043)

Pop. Change -1.009 -1.217 -1.005 -1.211 4.409 9.865
(1.576) (1.418) (2.131) (1.809) (4.753) (5.974)

Constant -5.265 -5.885 -5.693 -6.131 -4.209 -4.125
(0.252) (0.234) (0.372) (0.292) (0.700) (0.521)

Note: N = 9, 451. Values in parentheses are standard errors.
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We also �nd fairly consistent results across our ICEWS and GED models within the mis-

classi�cation stages of ourmulti-source with covariates models (see Table A.25). For example,

across both the Reuters and EFE-speci�c misclassi�cation equations in Table A.25, we consis-

tently �nd Forest Cover to be a positive predictor of misclassi�cation within our ICEWS and

GED models; although the coe�cient estimate on Forest Cover is not statistically signi�cant

in the case of the ICEWS-Reuters equation. This null �nding notwithstanding, these results

intuitively imply that municipalities with higher forest cover tend to experience higher levels

of misclassi�cation and thus reporting biases. Next, and similar to our �ndings for Africa

repression above, we �nd that Log Population is a statistically signi�cant negative predictor

of misclassi�cation for both news sources, and event datasets. This again is intuitive, in its

implying that more populated (and likely urban) areas are less likely to experience reporting

biases. Increases in population, on the other hand, are generally associated with increases

in misclassi�cation rates,38 perhaps due to the broader social disruptions caused by inward

migration (after controlling for total population levels within each municipality), or due to

this variable's proxying for agricultural areas. Finally, we generally �nd inconsistent results

for logged distance (in terms of signi�cance, sign, and magnitude) across our media sources,

and event datasets, suggesting perhaps that distance is a poor proxy for remoteness in this

context, especially after one has accounted for population-based factors and forest cover.

38Though this e�ect is not always statistically signi�cant.
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Table A.25: Models of Reporting Bias in Colombia 2000-2009

GED ICEWS GED ICEWS GED ICEWS
(Human-Coded) (Machine-Coded) (Human-Coded) (Machine-Coded) (Human-Coded) (Machine-Coded)

Probit Probit Multi-Source Multi-Source Multi-Source Multi-Source
Constant Pr Constant Pr W/ Cov W/Cov
Pr(Misclassi�cation Reuters)

Forest . . . . 1.449 0.055
(0.368) (0.364)

Log Pop. . . . . -0.252 -0.281
(0.062) (0.046)

Pop. Change . . . . 12.074 15.892
(6.665) (6.187)

Log Distance . . . . -0.140 0.032
(0.099) (0.076)

Constant . . 1.150 0.837 5.415 3.693
(0.122) (0.090) (1.419) (1.184)
Pr(Misclassi�cation EFE)

Forest . . . . 1.581 0.805
(0.364) (0.404)

Log Pop. . . . . -0.198 -0.340
(0.065) (0.048)

Pop. Change . . . . 1.693 14.585
(4.927) (6.379)

Log Distance . . . . -0.105 -0.266
(0.083) (0.073)

Constant . . 0.674 0.302 4.026 7.455
(0.145) (0.108) (1.288) (1.118)

Note: N = 9, 451. Values in parentheses are standard errors.
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Validation

We validate our multi-source models and results against our gold standard HRV data,

which was discussed both above and in our main Research Note. Recall that the GSRs

employed here were drawn from Colombia's CINEP data (CINEP, 2008). Like the Colombia

event data analyzed above, CINEP's HRV data contain comprehensive information on rebel

and paramilitary-perpetrated violence against civilians in Colombia for our event types of

interest. As mentioned previously, these CINEP data are unlikely to exhibit the reporting

bias problems that are common to global (human- and machine-coded) event datasets. This

in large part because CINEP has been documenting the con�ict in Colombia for over forty

years, and has created an archive that is curated by librarians with an extensive collection

of (Spanish language) national and regional Colombian newspapers and associated reports.

This collection is the basis for CINEP's coding of HRV data, in addition to victim testimony,

NGO reports, and government sources. As we mention in our main Research Note, these

features provide us with a GSR validation source (i.e., CINEP) that is generally unavailable

for country-speci�c con�ict applications, and the bivariate comparisons presented above help

to underscore this point.

To perform our validation exercises, we �rst extract the (misclassi�cation-adjusted) HRV

predictions from our Colombia-speci�c two-source models. We do so by generating the

predicted probabilities of HRV for each municipality-year in our sample, separately from each

of our multi-source estimators' HRV stage estimates. We then compare these predictions to

our binary CINEP records of municipality-year HRVs using areas under the receiver operating

characteristic curve (AUCs) and areas under the precision-recall curve (AUC-PRs). Given

the relative rarity of the events of interest, we favor the latter metric over the former (Ward

and Beger, 2017). The results of these comparisons are reported in Table A.26.

Turning to Table A.26, we can �rst note that all model predictions do a poor-to-modest

job of classifying our binary CINEP HRV data, with AUCs ranging from 0.649 to 0.673.

This relatively poor overall performance in classifying our CINEP events is also re�ected
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in our AUC-PRs, which range from 0.166 to 0.184 in Table A.26. However, recall that the

ICEWS and GED HRV measures used here represent only a tiny fraction of all HRV events

recorded in ICEWS and GED, given our subsetting of these data to only include events

coded by Reuters and EFE. As such, our models' poor overall classi�cation of the CINEP

cases is to be expected, and is in no way indicative of the overall quality of the ICEWS or

GED data. What is instead most relevant to the comparisons at hand are the comparisons

of AUC-PRs (or AUCs) between our GED and ICEWS based models, for a given model

speci�cation. Here we �nd that in each and every case, our ICEWS and GED-based models

perform comparably in classifying our held-out CINEP events. For example, in the multi-

source constant speci�cations reported in Table A.26 which are the best performing models

classi�cation-wise, we �nd that our GED models yield an AUC of 0.673 whereas our ICEWS

model yields an AUC of 0.661. These are e�ectively identical AUCs when rounded to the

second decimal point. The AUC-PRs for these constant-speci�cations are highly similar as

well, and range from 0.174 (ICEWS) to 0.184 (GED), thus slightly favoring the GED data

on this metric.

Turning to our multi-source with covariates model speci�cations, we again �nd very

similar AUCs and AUC-PRs across our GED and ICEWS models. In the case of AUCs, we

�nd here that our GED model provides an AUC of 0.665, whereas our ICEWS model yields a

slightly worse but still very comparable AUC (of 0.649). However, these patterns are reversed

in the case of the AUC-PRs reported in the bottom half of Table A.26. In this case, we �nd

that our ICEWS and GED AUC-PRs are again very similar, but now slightly favor the

ICEWS data (AUC-PR= 0.178) over the GED data (AUC-PR= 0.166). In sum, we �nd in

Table A.26 that each pairing of AUC-PRs (and each pairing of AUCs) is highly similar across

our GED and ICEWS-based data on models. This suggests that Colombian municipality-

year models employing either the GED or ICEWS data are comparable in their abilities to

predict CINEP HRVs�and in most cases these predictions are e�ectively identical. Hence,

for analyses of subnational HRVs in Colombia, our application we have obtained similar
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Table A.26: Classi�cation of CINEP HRVs

AUC AUC-PR

GED Pr(HRV) with Constant Pr 0.673 0.184

ICEWS Pr(HRV) with Constant Pr 0.661 0.174

GED Pr(HRV) with Covariates 0.665 0.166

ICEWS Pr(HRV) with Covariates 0.649 0.178

Note: N = 9, 451

substantive conclusions and similar predictive accuracy when utilizing machine or human

coded event data. These �ndings�along with those of our Africa application�help to

underscore the external validity of machine coded event data relative to human coded data.

External validation of this form represents a critical, and often overlooked, component to the

validation of machine coded event data (Bagozzi et al., 2016). In these regards, we believe

that the applications discussed above represent novel contributions to the measurement and

validation of (machine-coded) political event data.
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Classi�cation Formulas

Sensitivity =
number of True Positives

number of True Positives+ number of False Negatives
(A.3)

Specificity =
number of True Negatives

number of True Negatives+ number of False Positives
(A.4)

False Positive Rate = 1− number of True Negatives

number of True Negatives+ number of False Positives
(A.5)

False Negative Rate =
number of False Negatives

number of Fale Negatives+ number of True Positives
(A.6)

Pos. Predictive V alue (PPV ) =
number of True Positives

number of True Positives+ number of False Positives

(A.7)

F1 Score = 2 ∗ PPV ∗ Sensitivity
PPV + Sensitivity

(A.8)

Total Accuracy =
number of True Positives+ number of True Negatives

number of cases
(A.9)
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