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Abstract
Political scientists increasinglyuse supervisedmachine learning tocodemultiple relevant labels fromasingle

set of texts. The current “best practice” of individually applying supervised machine learning to each label

ignores information on inter-label association(s), and is likely to under-perform as a result. We introduce

multi-label prediction as a solution to this problem. A�er reviewing themulti-label prediction framework,we

apply it to codemultiple features of (i) access to information requests made to the Mexican government and

(ii) country-year human rights reports. We find that multi-label prediction outperforms standard supervised

learning approaches, even in instances where the correlations among one’s multiple labels are low.

Keywords: text-as-data, multi-label, machine learning, classification, prediction

1 Introduction

Supervised machine learning has dramatically expanded researchers’ abilities to measure and

classify important concepts from political texts (e.g., Laver, Benoit, and Garry 2003; Greene,

Park, and Colaresi 2019; Mitts 2019). Recent methodological innovations have likewise served

to further tailor these methods to the needs of political scientists (e.g., Cantú and Saiegh 2011;

D’Orazio et al. 2014; Chang and Masterson 2020; Miller, Linder, and Mebane 2020). Despite these

advancements, political scientists continue to primarily apply supervised machine learning to

political texts in an independent manner for each target variable considered. Doing so treats

each target variable as an unrelated quantity of interest during supervised classification. This

standard, independent classification approach is consistentwith the supervisedmachine learning

frameworks discussed in past political science reviews of automated text analysis (Grimmer and

Stewart 2013; Barberá et al. 2020).

However, political scientists also commonly endeavor to code multiple separate target vari-

ables from a single corpus of text, o�enwith a future intention of using saidmeasures as explana-

tory and/or outcome variables. For instance, Mitts (2019) uses a supervised approach to inde-

pendently classify 175,015 tweets across four nonmutually-exclusive labels: (1) sympathy for ISIS,

(2) life in ISIS territories, travel to Syria, or foreign fighters, (3) the Syrian War, or (4) anti-West

rhetoric, and then analyzes each as a distinct dependent variable in four separate statistical

models. Likewise, Kostyuk and Zhukov (2019) use supervised classification to separately code

political event attributes pertaining to event type, initiator/target, tactics, and casualties from

72,010 news reports and blog posts. These attributes are then leveraged to create a measure of

Ukrainian kinetic operations, whose effects on a (separately coded) cyber-warfare variable are

considered via vector autoregression. Appendix B in the Supplementary Material offers 10 similar

published examples.

In these contexts, substantial gains in classification accuracy—and, thus, also in variable mea-

surement and any subsequent regression-based inferences—can be obtained by treating one’s
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target variables as interdependent, and leveraging each variable’s supervised predictions as

features during the supervised classification of all other variables. We introduce one such super-

vised machine learning framework here: multi-label prediction.

Multi-label prediction offers substantial benefits over even the most flexible of independent

classification alternatives, in that the former uniquely leverages pertinent auxiliary information

that is already freely available—via theadditional label-to-feature relationsacrossone’s remaining

labels—during classification. In doing so, multi-label prediction avoids the significant training

costs associated with searching over a potentially infinite set of combinations and/or trans-

formations of one’s original document features to arrive at this same on-hand information for

classification. To illustrate thesepoints below,we first formally present themulti-label framework,

review a number of pertinent caveats and extensions, and introduce metrics to judge multi-

label classification performance. Our main contribution is to introduce these items alongside

guidance for applied text-as-data research. However, we also find that—as in other domains

(Madjarov et al. 2012)—a(n ensemble) classifier chainmulti-label approach has the best predictive

performance over the largest number of relevant metrics and across a variety of types of text-as-

data. We then verify that the predictions from this ensemble classifier chainmulti-label approach

also provide preferable (outcome and/or explanatory) variable measures for postclassification

regression analyses, when compared to independent classification.

To arrive at these findings, we first illustrate our proposed multi-label approach’s broader

benefits through an application to the coding of access to information (ATI) request texts—a

form of “big data” from citizen-government interactions with which political science research

has engaged (e.g., Chen, Pan, and Xu 2016; Berliner, Bagozzi, and Palmer-Rubin 2018; Berliner

et al. 2021). Our second application then evaluates multi-target prediction within the context of

the growing literature on the automated coding of human rights abuses from country-year human

rights reports (Greene, Park, and Colaresi 2019; Murdie, Davis, and Park 2020; Park, Greene, and

Colaresi 2020a). In both applications, and an accompanying Monte Carlo simulation, multi-label

prediction outperforms several alternative, independent supervised classification approaches—

even in circumstances of lowcorrelation among target variables. Our applications and simulations

further demonstrate that multi-label prediction performs much better than independent classifi-

cation in instanceswhere (i) correlations among target variables are high and/or (ii) the number of

available features or labeled cases for classification is relatively low.

2 Multi-label Framework

This section begins by reviewing a set of key components to single variable classification, before

generalizing this to instanceswhere researchers seek to classifymultiple variables (i.e.,multi-label

contexts). For supervised machine codings of text-as-data, we can define the main objective of

classification algorithms as separating the classes of a variable using only human-coded training

data. Ideally in such contexts, a model learns the underlying structure of a variable using said

training data, and this structure then generalizes well to unseen (i.e., out-of-sample) data. If the

target variable has only two possible values—for example, if the goal is to predict if a person will

vote or not—we refer to this task herea�er as “binary classification.” On the other hand, if there are

more than two possible classes for a single target variable, we term this variable as “nominal” and

characterize this task as “multi-class classification.” The latter would include, for example, efforts

to classify candidate vote choice in a multi-party systemwith more than two parties.

More formally, let X denote the input space and Y the output space (target). The goal is to

learn a function f : X −→ Y that maps an instance from the input space to the output space.

This function is learned from the training set {xi , yi | 1 ≤ i ≤ m}, where xi ∈ X represents the

features of an instance thatwill bemapped to a corresponding class (or label) yi ∈ Y representing

its characteristics. One fundamental assumption adopted by traditional classification algorithms
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is that each class is mutually exclusive. These are valid assumptions for the individual binary and

categorical vote choice variables mentioned above.

However, asnoted in the introduction, therearemany learning tasks forwhich these simplifying

assumption might not be reasonable. These situations commonly arise in researchers’ efforts

to code multiple, nonmutually-exclusive traits—which we define as labels1—from corpora of

political texts, as the examples from Mitts (2019) and Kostyuk and Zhukov (2019) illustrate above.

Alternatively, for the aforementioned vote choice examples, a similar situation would arise in

cases where a researcher is interested in predicting how a voter will vote across six distinct ballot

initiatives during a given election. As a third example, we note that more recent innovations in

semantic role labeling can o�en require classification of an even larger (but more incomplete)

number of overlapping labels per text-unit than the examples described thus far. In any of the

above cases, a set of labels must ideally be assigned to each observation in order to express its

nonexclusive characteristics in a manner that accounts for the mapping of multiple labels to a

single observation (e.g., an individual voter). This assignment paradigm is referred to herea�er as

“multi-label learning,” whereby the goal of one’s classification task becomes learning a function

that can predict the proper label sets for unseen examples (Zhang and Zhou 2013).

For multi-label problems, political scientists continue to use independent label prediction—

as illustrated by the examples highlighted in Section 1 and the Supplementary Material. We refer

to this standard approach as “binary relevance” (BR) herea�er. BR effectively decomposes multi-

label problems intomultiple independent binary label prediction tasks. In breaking one’s classifi-

cation tasks into a set of wholly independent, binary classification tasks, BR directly invokes the

simplifying assumptions mentioned above. However, because any and all relationships between

labels are accordingly ignored, BR will o�en achieve suboptimal performance in instances where

this simplifyingassumptiondoesnothold. This is a substantial limitation, given that (aselaborated

upon below) the effective exploitation of label correlations (i) is essential for accurate multi-label

classification and (ii) is themain way to copewith the challenge of large output spaces thatmulti-

label problems typically entail (Zhang and Zhang 2010).

As such, multi-label learning tasks require a distinct classification strategy from that which

is used for the assignment of a single label (per observation) within the BR or multi-class

classification paradigms defined above. Ignoring these multi-label attributes and classifying

all labels independently likely yields worse classification performance, and hence poorer

measurement, of said variables. Depending on how researchers use these classified variables

in subsequent statistical models, measurement shortcomings from independent classification

could lead tobiasedand/orunreliable inferences. Indeed, to theextent that the latter classification

approach leads tohighermeasurementerror inone’spost-classification independent (dependent)

variable(s), inconsistency (inefficiency) in one’s regression estimates—andahigher corresponding

risk of bias and incorrect inferences when said measurement error arises in either one’s

independent or variable(s)—can arise (Wansbeek and Meijer 2000; deHaan, Lawrence, and

Litjens 2019).

Multi-label learning algorithms were developed to address these types of concerns in the

context of news story and web-page categorization (McCallum 1999; Ueda and Saito 2002). In

both usage cases, texts are classified into multiple nonmutually-exclusive categories. A�er being

successfully applied to problems involving text, multi-label algorithms have been widely used on

diverse other tasks, such as automatic annotation of images and videos (Boutell et al. 2004; Qi

et al. 2007), bioinformatics (Clare and King 2001), and web mining (Tang, Rajan, and Narayanan

2009).

1 Whereas, we reserve “class” for only mutually-exclusive traits.
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2.1 Formal Definition
We now turn to formally define multi-label classification. For reference, we provide a summary of

the mathematical notation used within this section in Appendix Table C.1 of the Supplementary

Material. The multi-label paradigm can be more formally defined as follows: let X ∈ Òd be a d-

dimensional input space and the label space with q possible classes beY = {0,1}q . Similar to the

standard classification task defined above, the goal is to learn a mapping function—in this case,

defined as h : X −→ Y—from the training set D = {xi ,Yi | 1 ≤ i ≤ m}. For each instance (xi ,Yi ),

the input xi = (xi1, ...,xi d ) is a d-dimensional vector and the output isYi is a q-dimensional set of

labels. Therefore, for each new unseen example of x ∈ X, the multi-label classifier h(·) predicts a

set of labels h(x ) ⊆ Y.

For supervised text-as-data classification problems, the output of a multi-label model can

thereby be seen as a real-valued function f : X x Y −→ Ò, where f (x , y ) can be interpreted

as a compatibility or confidence function that evaluates how compatible or likely y ∈ Y is the

correct label of x. The classifier function h(·) can be obtained by taking the output with largest

compatibility score h(x ) = ar g max
y ∈Y

f (x , y ) or by using a thresholding function t : X −→ Ò such

that h(x ) = {y |f (x , y ) ≥ t (x ), y ∈ Y}.

Based on the formal definition presented above, it is evident that traditional supervised

classification problems can be viewed as a simplified version of multi-label learning, where each

target has only one (binary or nominal) label. The generality of multi-label classification makes

this task muchmore difficult to solve, given that each directional inter-label relationship must be

accounted for as a predictive feature in amanner that accounts for permutations. That is, in order

to accommodate inter-label relationships, one ideally needs to not only apply a classifier once to

each label (as is presently done within political science), but rather to classify each label once for

every possible ordering (i.e., subset) of all remaining labels—since these remaining labels, and

the order by which they themselves are classified, now have bearing on each label’s subsequent

prediction. In this regard, the key challenge of multi-label classification is thus the output space,

which grows exponentially as the number of labels increase. For example, a problemwith 5 binary

labels has 32 different label subsets. If we increase this number to 15 binary labels, the number of

possible combinations grows to 32,768.

To address these shortcomings, researchers have identified several ways to efficiently leverage

the relations among labels within multi-label classification tasks. Two longstanding strategies

include accounting for (i) pairwise correlations between any two labels (Ueda and Saito 2002;

Qi et al. 2007) or (ii) rankings between relevant and irrelevant labels (Elisseeff and Weston 2002;

Brinker, Fürnkranz, and Hüllermeier 2006). In comparison to BR, these alternative approaches

better manage the trade-off between performance and computational cost within multi-label

classification tasks.

However, these approaches encounter problems when the relationships among labels

become more complex than simple pairwise associations—which is o�entimes the case for

real-world social science data. This is especially the case for many efforts to code quantities

of interest from political texts. For example, with regards to the country-year human rights

application presented below, CIRI’s separate, nonmutually-exclusive human-rights labels for

state torture, political imprisonment, extrajudicial killings, and disappearances (Cingranelli and

Richards 2010) are likely to be highly interdependent facets of states’ overarching strategies

of repression, as opposed to simply being linked via pairwise associations. In such cases,

multi-label alternatives that accommodate the influences of all labels when predicting each

label (Yan, Tesic, and Smith 2007; Ji et al. 2008; Cheng and Hüllermeier 2009), can achieve

superior performance, albeit at the expense of higher computational costs andmore constrained

scalability.
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2.2 Categorization of Multi-Label Learning Algorithms
Methods for multi-label classification can be divided into two general categories: problem trans-

formation methods and algorithm adaptation methods. The former tackles the multi-label clas-

sification problem by reformulating this classification problem into other tasks, such as binary

classification (Read et al. 2009) or multi-class classification (Tsoumakas and Vlahavas 2007).

On the other hand, algorithm adaptation methods tackle the multi-label problem by adapting

learning algorithms to directly deal with multi-labeled data (Zhang and Zhou 2007), o�entimes

in manners that better account for the label associations in one’s data. We first discuss algorithm

adaptation below, before returning to problem transformation, and then a broader summary of

all approaches.

2.2.1 AlgorithmAdaptation. By tailoring existing algorithms tomulti-label contexts, algorithm adapta-

tionmethods possess an inherent appeal in that they (i) o�en employ algorithms that are already

familiar to researchers from single label contexts and (ii) most closely match the underlying data

generating process (d.g.p) of one’s multi-label data. Yet, such methods typically must sacrifice at

least someability to explicitly, and flexibly, accommodate inter-label correlations to achieve these

aims. In multi-label contexts, this o�en leaves algorithm adaptation methods open to the same

critiques that were previously highlighted for BR.

A canonical algorithm adaption method is the multi-label k-nearest neighbor (ML-kNN) algo-

rithm (Zhang and Zhou 2007). As the name suggests, this algorithm adaptation model is itself

built upon the more widely known kNN algorithm (Dudani 1976). In all (ML-)kNN approaches—

and for each datapoint in a test set—the model identifies its kNNs in the training set. Whereas

standard kNN thenassigns a label for a single trait to that datapoint basedupon themost common

label shared by that datapoint’s kNNs, ML-kNN instead considers the set of trait labels for each

datapoint based upon amembership counting vector of its kNNs’ corresponding label-sets. Using

the statistical information gained from these neighbors’ label sets, all labels are then assigned to

that datapoint via Bayesian inference.

Under thisBayesian framework, prior andposteriorprobabilities can thenbedirectly estimated

from a human-labeled text-as-data training set based on frequency counting.2 The process of

estimating prior probabilities for each label can also help to mitigate problems commonly faced

by text-as-data researchers such as class-imbalance. This algorithm has been used in several

real-world multi-label learning problems—in each case outperforming other multi-label learning

algorithms that were considered at the time (Zhang and Zhou 2007).

However, one of ML-kNN’s main limitations is that it does not explicitly consider the correla-

tion between labels. As such, ML-kNN discards relevant information, and and accordingly risks

assigning labels with suboptimal accuracy rates that are no better than the BR approach outlined

above. Several extensions have been proposed to address this potential deficiency. Examples

include extensions that (i) incorporate all of the components of the counting vector Cj in the

(non)assignment of label j (Younes et al. 2011) or (ii) consider the labels of neighboring instances

as “features” of a logistic regression whose output is the label to be estimated (Cheng and

Hüllermeier 2009). Nevertheless, the applicability of this algorithm adaptation framework in a

manner that fully accommodates correlations between labels remains limited. This leads us to

tentatively favor problem transformation methods, to which we now turn.

2.2.2 Problem Transformation. Rather than tailoring a multi-label algorithm to an existing multi-label

data structure, problem transformationmethods first “break up” one’smultiple labels—including

nominal labels—into a simpler set of (o�en binary) labels. The latter methods then leverage

2 More details can be found in Zhang and Zhou (2007).
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these restructured data in a manner that more explicitly accounts for inter-label correlations.

As such, problem transformation methods sacrifice information on the underlying d.g.p, and

original structure, of one’smulti-label data so as to better accommodate label correlations during

classification—and the added computation that this o�en entails.

One of themostwell-known and accessible problem transformation algorithms is the classifier

chain (CC; Read et al. 2009). In a similar manner to strategies of multiple imputation by chained

equations, the primary goal of the CC model is to transform the multi-label problem into a chain

of binary classifiers, where the prediction of subsequent classifiers is based on the prediction of

precedingelementsof thechain. SeeAppendixC.1 in theSupplementaryMaterial foramore formal

treatment.

The CCmethod does well at balancing predictive power and computational efficiency. Accord-

ingly, it has now been successfully applied to domains as varied as music, scene, yeast, genbase,

and medical classifications (Madjarov et al. 2012). It is important to highlight, however, that

the the ordering of the labels considered affects the CC algorithm’s performance, so it is o�en

necessary to run the model with several random permutations over the label space with and

without replacement. To address this, we propose CC extensions that utilize ensemble methods

within our applications further below, which we label as “ensemble CC” (ECC) herea�er. This

proposed innovation draws upon earlier CC extensions that have previously sought to optimize

label ordering via genetic algorithms (Goncalves, Plastino, and Freitas 2013) or Monte Carlo

methods (Read, Martino, and Luengo 2014).

The multi-label problem can also be modeled as an ensemble of multi-class classifiers, where

eachcomponent in theensemble targets a randomsubsetof the label spaceY uponwhichamulti-

class classifier is induced by what is known as the label powerset (LP; Boutell et al. 2004).3

This LP algorithm has been successfully applied to image classification, where it achieved

commensurate performance (Boutell et al. 2004). However, it is important to note that LP has

two major limitations. First, the prediction of new labels is limited by label sets that appear in

the training set. That is, the model is not able to generalize to unseen combinations of labels.

Second, the label space grows exponentially (2q ), so whenY is large, training becomes complex

and computationally expensive.

To overcome these two drawbacks, the LP algorithm can be extended under a random k-

labelsets (RAkEL) framework (Tsoumakas and Vlahavas 2007). This extension’s main innovation

lies in its use of N different LP classifiers on k different random subsets of one’s label space to

guarantee computational efficiency. The approach then ensembles these N LP classifiers for a

final prediction. The degree of label correlations is accordingly controlled for by k. For unseen

examples, each of the N different classifiers predict their corresponding labels. The final output

is determined by the ensemble of all N classifiers.

As an illustration, imagine a four-label classification task, y = [L1,L2,L3,L4],with two training

examples y1 = [0,0,1,1] and y2 = [1,0,0,0].WithLP, theoutputof themodelwouldbe restricted to

predicting either [0,0,1,1] or [1,0,0,0] as these are examples already seen during training. On the

other hand, RAkEL allows the model to generalize to combinations of labels that are not present

in the training set. For instance, for a RAkEL classifier with k = 2 that divides the label space in

k1 = [L1L2] and k2 = [L3L4], a classifier N1 is trained on the subset k1 = [0,0], [1,0] and another

classifier N2 is trained on the subset k2 = [1,1], [0,0]. The final output is assembled for all com-

binations seen by N classifiers. In this case, themodel is able to predict [0,0,1,1],[1,0,0,0],[0,0,0,0],

and [1,0,1,1], wherein the last two examples were not present in the training set.

3 In other words, each distinct set (combination) of labels is mapped to a new class. For a more formal treatment, see
Appendix C.2 in the Supplementary Material.
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Transforms Multi-label problem

into Multi-class Classification

Transforms Multi-label problem

into Binary Classification

Ignores label

correlation

Considers label

correlation

Only considers label

combinations present in

training data

Greatly affected by

label order

Less affected by

label order

Can incorporate unseen

label combinations

LP, RAKEL

RAKELLP

CCECC

BR ECC, CC

ECC, CC, BR

Problem Transformation

Figure 1. Relationships among problem transformation approaches.

RAkELhas achieved goodperformance inmulti-label domains involving document, image, and

protein classification (Tawiah and Sheng 2013). There are two types of RAkEL models: one con-

siders only disjoint (nonoverlapping) subsets (RAkELd ) and a second that considers overlapping

intervals (RAkELo ). In our applications, we consider RAkELd .

2.3 Summary of Approaches
We provide (i) an overview of the computational costs associated with eachmulti-label approach

in Appendix D of the Supplementary Material and (ii) a summary of our (tentatively favored)

problem transformation approaches, alongside the earlier-described BR approach, in Figure 1.

Since these latter methods are based on transforming the multi-label problem into binary or

multi-class classification, the training procedure is identical to standard supervised learning

algorithms.4 Likewise, thesemethods’ flexibility in incorporating different base classifiers of one’s

choosing helps to ensure comparable underlying interpretability relative to BR on this dimension.

That being said, ECC, LP, and RAkEL’s reliance on varying degrees of ensembling does raise prac-

tical challenges for these three approaches’ interpretability, relative to simpler BR frameworks.

Given thatmulti-label text-as-data problems are primarily oriented toward themeasurement and

accurate prediction of labels for future use—rather than explanation—this tradeoff in improved

accuracy for some loss in interpretability is preferable for many researchers.

With the above caveats in mind, we note that many of the multi-label approaches reviewed

above have exhibited good-to-excellent performance in text-as-data contexts in past comparisons

of multi-label methods (Madjarov et al. 2012). Yet, in terms of relative performance, none of

these multi-label methods has emerged as consistently superior to the others.5 In light of this,

our empirical applications compare the performance of a wide array of multi-label and standard

supervised classification approaches. However, in order to do so, special consideration must first

4 Consequently, the models are trained using cross-entropy as a loss function below.
5 Despite the impressive performance of deep neural networks (DNNs) in several areas, DNNs have not shown dominant
cross-domain performance when compared to classic multi-label models. That being said, Xu et al. (2019) do present
a selection of high performing DNNs for hierarchical (Baker and Korhonen 2017) and time-series (Smith and Jin 2014)
multi-output learning contexts. Supplementary Appendix Section E accordingly provides a comparison of our baseline
and primary multi-label approaches to two DNN approaches.
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Table 1. Multi-label evaluation metrics.

Best performance

Metric Type Summary value

Hamming
Loss

Example-based Computes the percentage of labels
that were misclassified.

0

Subset
Accuracy

Example-based Computes the percentage of
instances/examples that had all
of their labels classified correctly.

1

F1-Macro Label-based Calculates the F1-score for each
label independently, then
averages them. All labels are
treated equally.

1

F1-Micro Label-based All labels are aggregated before
calculating the F1-score, making
F-Micro more ideal for problems
with class imbalance.

1

Ranking
Loss

Ranking-based Calculates the average number of
incorrectly ordered label pairs.

0

be given to choices of comparison metrics, in light of the multi-label context being considered.

We, hence, now turn to discussing model comparison in multi-label contexts, before turning to

our applications in full.

3 Model Comparison

In single-label learning systems, performance is o�en evaluated by conventional metrics such as

F-score, precision, recall, area under the curve (AUC), and accuracy. However, the evaluation of

multi-label models is much more complex as each observation is associated with several labels

simultaneously. Rather than simply denoting whether a prediction for a given observation is right

or wrong, the latter quality implies that one needs to also evaluate (and hence aggregate over, in

somemanner) the share of correct labels predicted in multi-label contexts.

Themulti-label evaluationmetrics that have been designed for these purposes can be divided

in three general categories: example-based, label-based, and ranking-based metrics (Madjarov

et al. 2012). Example-basedmetrics evaluate average differences between one’s model prediction

sets and the true label set of one’s evaluation dataset. On the other hand, label-based metrics

assess the predictive performance for each label separately and then average the performance

over all labels. Finally, ranking-based metrics use the fraction of label pairs that are incorrectly

ordered to evaluate the model. As multi-label metrics may be unfamiliar to some political scien-

tists, we provide a summary table of each metric used in this article in Table 1, and then formally

present eachmetric below.

3.1 Example-Based Metrics
Hamming Loss is an example-based metric that computes the fraction of misclassified labels

for each observation. It considers both prediction errors (when the prediction is incorrect) and

omission errors (when the label is not predicted at all), where lower values are more optimal. For

example, a hamming loss of 10%means that 90% of all labels were classified correctly. It can be

formally defined as:

LHamming(Y ,Ŷ ) =
1

n labels

n labels∑

k=1

1(ŷk , yk ) (1)
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where n labels is the total number of labels, 1 is the indicator function, ŷ is the kth predicted label

and y is the actual label.

Subset Accuracy is a stricter metric than Hamming Loss. Instead of evaluating the fraction

of correctly classified labels, Subset Accuracy only considers a prediction as correct if all of an

observation’s predicted labels are identical to its true label set:

SubsetAcc (Y ,Ŷ ) =
1

m

m∑

i=1

1(Ŷi =Yi ), (2)

where m is the total number of examples in the test set, 1 is the indicator function, Ŷi is the

ith predicted label set, and Yi is the ground-truth label. This metric can thus be interpreted as

reporting the percentage of all observations that have all labels correctly classified, with higher

values on this metric being more optimal.

3.2 Label-Based Metrics
For label-based metrics, we consider Macro- and Micro-F1 scores. Each is based on precision and

recall.6 Precision indicates the proportion of predicted positives that are truly positivewhile recall

denotes the proportion of actual positives that are classified correctly. Macro-F1 is the harmonic

mean of the precision and recall averaged across all labels. The precision-macro (pmacro) and

recall-macro (rmacro) are defined as follows:

pmacroj =
TPj

TPj +FPj
, (3)

rmacroj =
TPj

TPj +FNj

, (4)

where TPj ,FPj , and FNj denote the true positive, false positive and false negative rate for the label

j respectively and q is the number of labels for each example. Macro-F1 can be defined in terms of

these metrics as

Macro−F1 =
1

q

q∑

j=1

2 pmacroj . rmacroj

pmacroj + rmacroj
. (5)

On the other hand, for Micro-F1 both precision and recall are defined differently:

pmicroj =

∑q

j=1
TPj

∑q

j=1
TPj +

∑q

j=1
FPj
, (6)

rmicroj =

∑q

j=1
TPj

∑q

j=1
TPj +

∑q

j=1
FNj

. (7)

Correspondingly, Micro-F1 is defined as follows:

Micro−F1 =
2 pmicroj . rmicroj

pmicroj + rmicroj
. (8)

6 As such, these particular metrics may not be feasible for applications where extremely imbalanced or incomplete labels
preclude the calculation of precision and/or recall.
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Micro-F1 calculates the metrics by counting the total number of true positives, false negatives,

and false positives. That is, the scores of all labels are aggregated to compute the metric. On the

otherhand,Macro-F1 calculates themetrics for each label independently, and thenaverages them.

3.3 Ranking-Based Metrics
Ranking Loss evaluates the fraction of label pairs that are incorrectly ordered. As such, it considers

only the relative rankings (i.e., orderings) of one’s label predictions—in terms of which labels

exhibit higher versus lower predicted probabilities in that label set—and the correspondence

between these rankings and a true label set. It can be defined as:

R loss =
1

m

m∑

i=1

1

|Yi | |Ȳi |
|{(y ′
, y ′′ |f (xi , y

′) ≤ f (xi , y
′′), (y ′

, y ′′) ∈Yi x Ȳi }|, (9)

where Ȳ is the complementary set of Y in Y. In this case, Ranking Loss is interpreted such that

the lower the Ranking Loss, the better the performance. In a similar manner to AUC in single-

label prediction contexts, one strength of Ranking Loss is its reliance on relative orderings of label

predictions rather than on arbitrary thresholds (e.g., 0.5). This ensures that predictive evaluations

via Ranking Loss will be less sensitive to factors that lead to consistently (high or low) predictions

relative to a chosen threshold.7

To illustrate this, imagine a set of true labelsY1true = [1,0,0],Y2true = [1,1,0] anda corresponding

set of label predictions given by a chosen classifier of f1pred = [0.4,0.1,0.2], f2pred = [0.9,0.8,0.6].

Usinga threshold ruleof0.5 (1 if f (·) ≥ 0.5, 0otherwise),wewouldobtaina relativelyuninformative

Hamming Loss of 33% and Subset Accuracy of 0%, asY1pred = [0,0,0],Y2pred = [1,1,1]. On the other

hand, the resulting Ranking Loss would be zero (i.e., perfect).

4 Applications

4.1 Mexican ATI Requests
Our first application examines ATI requests made to the Mexican federal government during

the period 2003–2015. ATI requests in this context have been previously analyzed in efforts

to assess the degree to which Mexican citizens use this ATI system to hold their government

publicly accountable (Berliner, Bagozzi, and Palmer-Rubin 2018), or to understand government

responsiveness (Almanzar, Aspinwall, and Crow 2018; Berliner et al. 2021). We provide additional

background on Mexico’s ATI system in the Supplementary Material. The textual content of our ATI

requests contains requesters’ open-ended descriptions of their desired information, as entered

into an online ATI request system’s primary request field, supplemental information field, and

attachments field. Attachments were webscraped, converted tomachine readable text via optical

character recognition, and then combined with other request text fields to form our primary

textual entries of interest. Altogether, this process produced a sample of 1,025,953 requests for

our consideration.

We are interested in a wide variety of traits associated with each of these request texts,

pertaining to qualities such as the use of legalistic and technical language, the number of distinct

pieces of information requested, and the appropriateness of the request for the targeted agency.

Developing accurate and fine-grained measures of attributes like these will enhance understand-

ings of the nature and dynamics of citizen demand for information, and of the request-specific

determinants of government responsiveness—both in general and as it varies across agencies

and time. We accordingly drew a random sample of 4,925 requests—stratified by year—from our

full sample of request texts. Six Mexico City-based coders coded these request texts for distinct

7 For example, such as class-imbalance or one’s choice of base classifier.
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ATI-request traits. For this paper, we retained 26 total (ATI-request trait) labels for classification.

Our original request traits—and overall human coding approach—are discussed in the Supple-

mentary Material.

With this sampleof 4,925humancoded requests,we then trainedall aforementionedclassifiers

on this sample, classifying all 1,021,028 remaining (non-human coded) ATI requests for each

of our 26 labels. All relevant text processing steps that were applied to the raw texts prior to

classification—and the hyperparameters used for each model—are described in the Supplemen-

tary Material. The overall level of correlation for our 26 labels is not high, suggesting that this

application is a “hard test” for the potential benefits of multi-label classification. On average, the

correlation between our pairs of hand-coded labels is 0.06 with the lowest and highest pairwise

correlations being 0 and 0.40, respectively.

We next evaluate the value added of the multi-label framework (i.e., of considering inter-label

relations for our document-level labels). In order to do so, we compare the results obtained

from four plausible approaches to handling multi-label data. The first pair of general approaches

that we consider are BR and ML-kNN. Recall that neither of these two approaches consider label

relations. By contrast, the second pair of generalmulti-label approaches that we consider (CC and

LP) do consider label correlations.

Within each of these general approaches, we then implement and consider several of the

extensions described further above. Turning first to the CC approach, we consider its basic imple-

mentation and also a version where the label ordering was permuted. For the latter CC approach,

the final output was composed of the average of each permuted chain, ECC.8 Similarly, for the LP

approach, we considered both its standard definition and the RAkEL extension. The base classifier

for each of these methods was a standard logistic regression.

For theML-kNN, we only considered the standard version since its proposed extensions are not

yet readily available. On the other hand, we evaluate four different varieties of BR classifiers. The

first, presented as standard BR, used a simple random forest with the same parameters applied to

all labels. For the secondBR variant, we performa grid search to find the best performing classifier

and corresponding hyperparameters for each label. This approach is labeled as BR optimized

below.

For the third BR variant, BR optimized threshold, we kept the same classifier for all labels.

However, insteadof using the standard0.5 classification threshold,weoptimized the threshold for

each label by selecting 20 different splits of the training data and selecting the threshold value for

each label that maximized the F1-score. Finally, tomore directly address class-imbalance in some

labels, we used an oversampling technique to generate synthetic samples from theminority class,

known as SMOTE (Blagus and Lusa 2013). Using this technique, we trained the final BR classifier

that we consider, herea�er referred to as BR optimized SMOTE.

Themulti-label results obtained from all classifiers considered are summarized in Table 2. The

algorithms used were based on the implementations provided by Python’s scikit-multilearn

package (Szymański andKajdanowicz 2017) andsklearn (Pedregosa et al. 2011)9. Eachmodelwas

evaluated using 80% of the data for training and 20% for testing with 10 different splits. Further

details on hyperparameter selection for each algorithm considered appear in Appendix Table E.2

in the Supplementary Material.

Turning to Table 2, we find that ECC achieves the best performance among all tested classifiers.

That is, we can determine from Table 2 that ECC routinely outperforms our alternate approaches,

and can also observe that ECC is a top-three performer across all metrics used. This finding

supports our contentions regarding the importance of taking into account relationships between

8 As this algorithmwas not present in Python’s scikit-multilearn package (Szymański and Kajdanowicz 2017), we havemade
its implementation available in our repository.

9 See the ml3 library (Probst et al. 2017) for multi-label methods in R.
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Table 2. Results for 10 different data splits.

Subset Hamming Ranking

Algorithm Accuracy Loss Loss F1-Micro F1-Macro

Classifier chain (CC) X

Ensemble CC (ECC) X X X X X

RAkEL d , k = q/4

RAkEL d , k = q/2

Label powerset X

Binary relevance (BR) X X

BR optimized X

BR optimized SMOTE X X

BR optimized
thresholds

X X X

ML-kNN

The top threeperformers for eachmetric arehighlighted. Full details appear inTableE.1 of theSupplementary
Material.

labels for multi-label classification of political text-as-data. The complete results for all metrics

considered here can be found in Table E.1 of the Supplementary Material and are consistent with

this summary interpretation. These results suggest that ECC also exhibits the lowest average

deviationwhen compared to other algorithms. Additional discussion of the predicted proportions

for each label is likewise presented in the Supplementary Material.

For the four BR classifiers considered in Table 2, the optimized version achieved the lowest

Hamming Loss whereas the SMOTE version achieved the highest F1-Macro. The latter finding

underscores our earlier contentions regarding F1-Macro being a poor metric for class imbalanced

data. Regarding the former finding, we can note that each of the classifiers used in the BR

optimized-component of this application was selected based upon the accuracy score for its

corresponding label individually. Therefore, theseBR classifierswere optimizedbyminimizing the

Hamming Loss. Regarding the remaining classifiers in Tables 2 and E.1, we can further observe in

this case that the results for ML-kNN10 are remarkably worse than all other models.

We can thus conclude that multi-label approaches that give careful consideration to the rela-

tionships between one’s labels tend to outperform several less label-aware approaches that are

more common in the political science literature. To this end, our CC approaches tended to exhibit

higher Subset Accuracy than BR and comparable results for other metrics. This finding, and those

outlined above, suggest that multi-label classification allows researchers to achieve superior

labelswithinmulti-label classification tasks, even in contextswhere the correlationbetween these

multiple labels is relatively low. This provides strong support for the multi-label approach in a

real-world text-as-data context. Our next application offers researchers further guidance onwhen,

specifically, multi-label methods are likely to be more or less effective.

4.2 Country-Year Human Rights Practices
Our second application allows us to evaluate the benefits of using multi-label algorithms in the

context of a separate political science text-as-data domain. For this application, we specifically

compare the best performing multi-label algorithm from our first application (ECC) to BR using

a set of extant human rights texts and labels. Our human rights data include a combination of

10 Recall that ML-kNN, like our BR approaches, does not consider label relations.
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(i) country-year textual reports on human rights practices and (ii) overlapping labels of states’

annual human rights practices, as human-labeled from these same texts by the CIRI data project

(Cingranelli and Richards 2010). As noted in the introduction, automating the measurement of

human rights abuses from the human rights texts is an area of growing interest in political science

(Fariss et al. 2015; Greene, Park, andColaresi 2019;Murdie, Davis, andPark 2020; Park, Greene, and

Colaresi 2020a,b). Our applicationofmulti-labelmethods to thesedata thus stands to advance the

state of the art for these automated endeavors.

The text-as-data component to this application is a corpus of U.S. State Department Country

Reports on Human Rights Practices for the years 1981–2011.11 Each document corresponds to the

State Department’s assessment of a particular country’s annual domestic human rights practices

during theprevious calendar year.Wematch these reports to 14 indicators, fromtheCIRIproject, of

specific types of human rights violations and practices at the country-year level. These indicators

were human-coded by the CIRI project from the U.S. State Department texts outlined above, and

encompass categories of human rights abuse that range from targeted killings and torture to

violations of women’s political rights and freedom of speech. To simplify interpretation, we (i)

dichotomize each (originally ordinal) CIRI variable and (ii) then reverse-code each dichotomized

variable such that higher values imply worse (as opposed to better) human rights performance.

We provide further details on these CIRI variables in the Supplementary Material, Appendix F.

In total, there are 4,756 reports, each with 14 binary indicators for (country-year) violations of

different human rights wherein a 0 denotes “no violations” of a given violation type and 1 denotes

a human rights violation of a certain type. As noted above—and unlike our first application—these

labels were directly drawn from an existing human-coded country-year dataset (i.e., CIRI), rather

than from human-labeling of our own. These human rights labels are furthermore much more

highly correlated than the previous ATI Requests application. On average, the correlation between

each current label is 0.33, with a maximum value of 0.60 and aminimum 0.06.

With respect to the text features considered,webeginwith the full document termmatrix (DTM)

of raw term counts from our human rights reports of interest. This DTM format is consistent with

formatsusedbypast text-as-data research into these sameStateDepartmenthumanrights reports

(Farissetal.2015), and, inour case, follows thepreprocessing stepsappliedbyBagozzi andBerliner

(2018) to a similar corpus of human rights reports. A�er implementing these preprocessing steps,

our final DTM contains 2,445 unique stemmed unigrams as features.

In addition to these DTM-features, the ECC algorithm also allows us to incorporate the label

correlation information between our CIRI human rights violation target measures within our

multi-label classification tasks. We anticipate that the latter information will be highly relevant,

given that—asmentioned in Section 2—many of the specific CIRI violations considered here (e.g.,

disappearances, killings, and torture) are likely to arise (and be correlated with one another)

under a common strategy of state repression. We are, hence, interested in quantifying the added

improvement that is gained by accounting for these interdependencies. Within these evaluations,

this second application also (uniquely) varies the set of retained features that we use in classifica-

tion, so as to assess whether our findings with respect to the ECC’s added improvements vary in

relation to the number of features that a given researcher has available for use in classification.

We thus evaluated the performance of ECC and BR with respect to the classification of our

14 binary human rights violation categories when including different subsets of DTM features,

which are chosen at random. We posit that if a classifier has enough information from its original

features to adequately classify all target labels, there is probably very little to gain in leveraging

the relationships between target labels during classification.12 On the other hand, if there are

11 While these reports are available for later years, CIRI is only available through 2011.
12 In fact, doing so could even potentially reduce classification performance.
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Figure 2.Performance of binary relevance (BR) and ensemble classifier chain (ECC) for the proposedmetrics.
Shaded regions denote the standard deviation of the bootstrap splits. For the metrics reported in the le�-
handpanels, higher values implybetterperformance. For themetrics reported in the right-handpanels, lower
values imply better performance.

insufficient features to properly classify all target labels, the additional information available to

the researcher via any empirical correlations between each multi-label label will likely improve

prediction significantly. This suggests that our multi-label approach will improve in relative per-

formance over BR as the number of available features for classification declines.

We utilize our human rights data within a series of experiments to evaluate the above con-

tentions. These experiments corresponded to our evaluation of ECC and BR model performance

across 10 different data splits (80% for training and 20% for testing) for each feature level con-

sidered. The number of features ranged from all features available to as low as 20% of the total

number of features drawn at random. In evaluating the ECC andBR approaches, we consider three

base classifiers in each case: support vectormachine (SVM) with linear kernel, random forest, and

logistic regression.

The results from these experiments are presented in Figure 2, considering five of the model

performance criteria outlined above: Subset Accuracy, Hamming Loss, F1-Macro, F1-Micro, and

Ranking Loss. For all results plotted in Figure 2, BR and ECCbase classifierswere chosen according

to best overall performance. The best base classifier for BR was an SVM with linear kernel,

whereas for the ECC the best performing base classifier was a random forest. Our conclusions are

comparable when we standardize the base classifier across BR and ECC.

Examining the performance criteria in Figure 2, we can first observe that ECC routinely outper-

forms BR nomatter themodel performancemetric or percentage of retained features considered.

As in the case of Mexican ATI requests, this result provides strong support for the use of ECC (and

hencemulti-label methods) in contexts where a researcher is faced withmulti-label data. Further,

whenonly a small percentageof features are available (20%), thegap inperformancebetweenECC

and BR is the widest. For instance, this gap is 11.09% for Subset Accuracy with 20% of features

available. This result implies that the desirability of ECC over the more commonly used BR is

especially pronounced when researchers are faced with a multi-label problem but have a limited
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number of features for prediction. As the number of available features increases, we find that the

difference in performance between ECC and BR becomes less and less notable.

Hence, when features are abundant, the benefits of ECC become less salient, suggesting that

researchers whose prediction tasks already include an exceptionally large number of (relevant)

features may find BR to be sufficient. By contrast, researchers faced with a more limited set of

features—in terms of total number, relevance, or related traits (e.g., sparsity)—are likely to espe-

cially benefit from using ECC or other multi-label methods. These trade-offs notwithstanding, as

both applications suggest, multi-label methods typically exhibit advantages over BR approaches

even in cases where one’s feature set is relatively large and even when one’s multi-label targets

exhibit a relatively low level of correlation.

4.3 Monte-Carlo Simulations
The applications presented above assess the performance of a wide range of multi-label classi-

fiers in two distinct empirical settings and across different levels of available features. However,

these applications do not provide insight into the relative performance of these approaches

under differing (i) scenarios of available training data or (ii) end-use cases for one’s classified

labels. Accordingly, our SupplementaryMaterial further compares our best performingmulti-label

approach (ECC) to BR across a series of Monte-Carlo simulations.

We find that ECC outperforms BR for every classificationmetric considered—and especially for

Subset Accuracy and Hamming Loss. Across three auxiliary regression set-ups, we then confirm in

this context that ECC’s superior classification performance also ensures that the parameter esti-

mates obtainedwhen subsequently using ECC’s classified labels as regressors and/or regressands

are superior in accuracy and coverage to those recovered by BR—and increasingly so as one’s

available training (test) data decrease (increase).

5 Conclusion

Supervised machine learning is now a commonly used means for coding measures from political

and social texts.While such tools are typically applied independently toa single variableof interest

at a time,many political science projects now seek to codemultiple, distinct target variables from

a single set of texts. We demonstrate that substantial gains can be made by recognizing this data

structure, and by using multi-label prediction to leverage each target variable’s predictions when

predicting subsequent target variables.Givencurrent trends inpolitical text classification (Barberá

et al. 2020; Chang and Masterson 2020; Miller, Linder, and Mebane 2020)—and related trends in

automated image and audio analyses (Dietrich, Hayes, and O’Brien 2019; Torres and Cantú 2020;

Williams, Casas, and Wilkerson 2020)—the need for multi-label methods is only likely to grow in

the future.

This paper has accordingly sought to introduce political scientists to multi-label prediction,

and to highlight where and how it may benefit their own research. Our applications and simula-

tions demonstrate that multi-label classification increasingly outperforms standard classification

approaches (i) as the correlation across one’s target variables increases and/or (ii) when one’s

share of training (test) data declines (increases). We also offer further insight into precisely

whenmulti-label methods offer significant advantages in our second application’s determination

that the relative strengths of multi-label classification will decidedly increase as the number of

available features declines. To facilitate these insights, we also provide a comprehensive overview

of the requisite performance criteria for evaluations of multi-label predictions. Together, these

insights will help to ensure that future multi-label classifications of political texts are as accurate

as possible.
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