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Abstract

We develop a new Bayesian split population survival model for the analysis of survival data with misclassified
event failures. Within political science survival data, right-censored survival cases are often erroneously
misclassified as failure cases due to measurement error. Treating these cases as failure events within survival
analyses will underestimate the duration of some events. This will bias coefficient estimates, especially
in situations where such misclassification is associated with covariates of interest. Our split population
survival estimator addresses this challenge by using a system of two equations to explicitly model the
misclassification of failure events alongside a parametric survival process of interest. After deriving this
model, we use Bayesian estimation via slice sampling to evaluate its performance with simulated data, and in
several political science applications. We find that our proposed “misclassified failure” survival model allows
researchers to accurately account for misclassified failure events within the contexts of civil war duration and
democratic survival.

Keywords: Bayesian methods, duration models, mixture distributions

Introduction
Researchers often analyze data on the time until an event occurred (or “failed”), otherwise known
as “survival data.” For Political Science survival data, one’s ability to record an event as having
failed at a given point in time is frequently prone to measurement error. More precisely, Political
Science survival data can often over-report events as having failed, such that some observations’
true censored values are misclassified as failed. This produces an unobservable mixture of failure
events within one’s data, with some failure events corresponding to true failure events, and
other failure events representing cases that have been incorrectly misclassified as failures (i.e.,
“misclassified failures”). Misclassified failures (MFs) are in actuality right-censored events: the
researcher should only conclude that the observation lasted up until the recorded failure time.
Concluding instead that the observation failed at that point in time is problematic as there is a
non-zero probability that the observation persisted past that point.

There are several scenarios where (a subset of) recorded failure events may actually persist
beyond their recorded failure time in this manner, leading to misclassification in event failures.
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For example, in many Political Science applications one’s events of interest often do not have
clearly observable end points (i.e., “failures”). When this is the case, the researcher must establish
a threshold criterion to determine whether (and when) a duration observation (or some subset
of observations) failed. Often the strategy is to choose a failure threshold that, if anything,
underestimates the length of one’s actual event. The implicit reasoning for this is that it is better
to be conservative and ensure that coded events end before they truly do than it is to code events
as incorrectly persisting beyond their true failures. As an example, consider research on civil war
duration. Here, researchers typically analyze the durations of rebel-government conflicts, but
record civil war end dates (“failures”) for specific conflicts based upon 24-month spells with fewer
than 25 battle deaths per year (e.g., Balch-Lindsay and Enterline 2000, Buhaug, Gates, and Lujala
2009, Thyne 2012). This threshold is overly conservative, especially for lower-intensity civil wars
in remote or poor information environments that persist indefinitely with little actual fighting.!
Treating these cases as failures in survival analyses can lead to bias, especially if covariates of
interest happen to be correlated with an observation’s likelihood of misclassification of failure—as
demonstrated in the sections further below.

Misclassified failure events can also arise in survival data due to a variety of other coding or
reporting processes. For example, within long-range historical analyses, studies of the durations
of ancient civilizations or political processes therein (e.g., Cioffi-Revilla and Lai 1995; Cioffi-Revilla
and Landman 1999) typically do not have data on the precise time point of a given failure event
due to the sands of time. Instead, researchers must make do with the best available proxy for
such a failure event, often using the last known historical record (e.g., artifact or carbon dating)
of an ancient civilization or social activity. Here, each observation’s recorded failure time is an
underestimate of that observation’s true life span, in that a researcher knows with certainty that
the observation lasted at least up until that point, but there is a strong likelihood that it persisted
for some amount of time past that recorded failure. To the extent that these underestimates
of duration are non-random, and are correlated with commonly studied covariates (e.g.,
environmental or geographic conditions), bias will again arise in survival estimates of these
phenomena. Finally, political actors often self-report their duration of (non)engagement in a
given political activity, and these reports are often leveraged within survival analyses (e.g., Cress,
McPherson, and Rotolo 1997; Box-Steffensmeier, Radcliffe, and Bartels 2005). In some cases,
these actors may strategically under-report their duration of (non)engagement, ensuring that
the recorded failures in one’s survival data to exhibit misclassification.

To address the methodological challenges associated with MFs, we develop a parametric
MF survival model that explicitly accounts for the potential that an unknown subset of failure
events actually “lived on” beyond a researcher’s recorded failure times for those observations.
Our proposed model does so by estimating a system of two equations. The first is a “splitting”
equation that estimates the probability of a case being a misclassified failure, with or without
covariates. The second equation then represents that of a standard parametric survival model,
whose relevantfailure and survival probabilities are now estimated conditional on a case not being
a misclassified failure.

As such, our model shares similarities with the cure survival model, which has been previously
used in Political Science to model competing processes of democratic survival (Svolik 2008), or to
accommodate heterogeneous mixtures of “at risk” and “not at risk” countries in global analyses
of irregular leadership changes (Beger, Dorff, and Ward 2014, 2015; Beger et al. 2017). However,
in contrast to the cure model—which only allows one to model heterogeneous mixtures among
observations that have not failed—our proposed model allows one to specifically account for

A similar case is the survival of terrorist groups, where scholars code and analyze survival as the time between a terrorist
group’s first and last known attacks (Young and Dugan 2014).
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heterogeneous mixtures of failure cases. This in turn suggests that both models can alternatively
be seen as “inflated” models, wherein our proposed model accounts for inflation in failure cases
and the cure model accounts forinflation in non-failure (i.e., right-censored) cases. In this light, our
paper also contributes to researchers’ broader efforts to disentangle mixtures of multiple survival
data processes within the contexts of repeated events (Box-Steffensmeier, De Boef, and Joyce
2007), survival phases (Metzger and Jones 2016), and non-proportional hazards (Keele 2010; Licht
2011; Jin and Boehmke 2017; Ruhe 2018).

The remainder of this paper proceeds as follows. After deriving our model in non-time-varying
and time-varying covariate contexts, we develop an R package to facilitate its estimation via
Bayesian inference with a slice-sampling algorithm (i.e., a Markov Chain Monte Carlo method).
We then illustrate the advantages of our Bayesian model within a series of Monte Carlo (MC)
simulations and two separate political science applications. Notably, these illustrations reveal
that our proposed model not only is capable of providing improved survival estimates—and
theoretical insights—concerning the determinants of survival processes when MFs are present,
but also offers researchers a means of theoretically identifying (and testing for) the factors that
govern a particular MF process.

Survival Model with Misclassified Failure

Parametric Misclassified Failure Model

We formally describe below our new split population survival model—labeled as the “misclassified
failure” (MF) model—that explicitly models the misclassification probability of failure versus
right-censored events. We first define our MF model’s general parametric log-likelihood function,
which can be used in conjunction with commonly used parametric survival models (e.g.,
exponential, Weibull, or log-normal). We then use this general MF framework to develop our main
model of interest—the Bayesian MF Weibull model with time-varying covariates—that is estimated
by Markov Chain Monte Carlo (MCMC) methods.

We start by defining a general parametric survival model for continuous time duration data,
where subjects i = {1,2,... N} each eventually experience an event of interest. However, not
all subjects need experience the event during a particular sample period, as some may survive
until the end of the sampling window, in which case they are “censored” in their final period of
observation (5,- = 0 if censored, and 1 otherwise). The duration of interest t is thus assumed to
have a probability density function (PDF) of (t) = Pr(T; = t), where T is an observation’s duration
of time until experiencing the event or censoring. The cumulative distribution function (CDF) for
the probability of the event on or before ¢ is accordingly Pr(T; < t) = F(¢t) = fot f(t) dt, where
the probability of survivalis Pr(T; > t) = S(t) = 1 — F(t). With this PDF and CDF, the hazard of an

f(t)

event at ¢ given that the event has not occurred prior to that point is h(t) = 5 We nextuse these

probability statements to define the (log) likelihood for a general parametric survival model.

To this end, note that uncensored observations (5,- = 1) provide information on both the
hazard of an event and the survival of individuals prior to that event, whereas censored
observations (5,- = 0) only provide information on an observation having survived at least until
time T;. Combining each set of observation’s respective contributions to the density and survival
functions, the likelihood and the log-likelihood function(s) of the standard parametric survival

model are respectively,

N ~ ~
L= |[FEN[SEN'""C and (1
i=1
N —_— —_—
InL = ) {CiIn[f(ti)X;, B)] + (1 — Ci) In[S(¢;[X;, B)]}, (2)
i=1
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where X; are pl-dimensional covariates and B is the corresponding parameter vector in R”'.
We build on this standard survival model to account for asymmetric misclassification arising
within one’s censored and failure observations to develop our MF model. To do so, we focus
on situations where censored cases are misclassified as failed observations, in which case one’s
observed censoring indicator 5, accurately records all censored cases (V(5,- =0): (C; = 0)) but
mis-records some subset of non-censored failure outcomes as censored (3(5‘,- =1):(C; =0)).
Drawing on Box-Steffensmeier and Zorn’s (1999) notation in their review of the cure survival
model, we define a corresponding probability of misclassification as a; = Pr(C; = 11C; = 0).
This implies that the unconditional density is defined by the combination of an observation’s
misclassification probability and its probability of experiencing an actual failure conditional on
not being misclassified:

Pr(C; = 1|C; = 0) + Pr(C; = 0|C; = O) Pr(t; < T;) = a; + (1 — a)F (t;), (3)

with the corresponding unconditional survival function of

Pr(C; =0|C; = 0) Pr(t; > T;) = (1 — a;)S(¢)), (4)

where a; can be estimated via a binary response function such as probit, complementary log-log,
or logit and is thus defined for the logit case as:

exp(Z;y)

B exp(Z;y)’ ®

I
where Z; are p2-dimensional covariates. y is the corresponding parameter vector in RFz.
Combining each set of observation’s respective contributions to the density and survival
functions, and given the expression for a; in (5), the log-likelihood function of the general
parametric split population model with MF cases (without time-varying covariates) is

N
L= {Cilnla; + (1 = ) (£iX;, A)] + (1 = C) In[(1 - &) S(&i1X;, BT} (6)
i=1

We next extend our MF model developed above and the model’s log-likelihood in (6) to account
for time-varying covariates. To do so, we re-define our survival data with unique “entry time”
duration t0 and “exit time” duration ¢t for each period at which an observation is observed. As
such, t0;; denotes observation i’s elapsed time since inception until the beginning of time period
J and t;; denotes the elapsed time since that observation’s inception until the end of period ;.

An observation’s status at time t;; is then coded as censored (C;; = 0) oras having failed or “ended”
(C‘,-j = 1) attime t;;. For ¢, the PDF (£ (t)), CDF (F (t)), probability of survival (S(t)), and hazard of an
event (h(t)) remain as defined above. However, we must now also define the probability of survival

up until period j, as

S(t0) = 1 - F(t0), (7)

where F(t0) = Oto f(¢0). With S(t0) defined, we extend the general parametric survival model’s
log-likelihood defined in equation (2) to accommodate time-varying covariates X;; and associated

parameter vectors of B by conditioning an observation’s hazard and survival probability for time
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2.2

t upon its probability of survival until ¢0:

tij|Xij, B) = S(tj|Xij, B)
InL = Z {c,JI [ toulx,j,ﬁ)] +(1=Cjj)In [—S(to,ﬂx,-,,p)]}' (8)

As described in the Supplementary Appendix, we use the steps described in equations (3) to (6)
and extend the log-likelihood function in (8) to define the log-likelihood function of the parametric
MF model with time-varying covariates as:

N f(t;j1Xij, B) ~ S(tij1Xij, B)
InL = ; {C,'j n [a,-j +(1 - a’/j)m] +(1- Cij) In |:(1 - (X,j)W]} 9)

% can be accordingly estimated via a logit CDF, or alternatively via a probit

or a complimentary log-log CDF. Thus, as shown in the log-likelihood in (9), the MF model with
time-varying covariates accounts for the probability of misclassification via a;; since the observed
event failures may include latent MF cases and the influence of covariates on the hazard of the
event of interest. Note that the general properties of the standard cure model also—as presented
in Box-Steffensmeier and Zorn (1999, 5) and as shown in the Supplementary Appendix—hold for
the MF model, including (i) the reduction of the latter to a standard parametric model when a;; = 0
and (ii) parameter identification even in the case where identical covariates are included in Z and
X. But in contrast to the standard cure model (which accounts for an excess number of subjects
who are immune to experiencing an event), the MF model with time-varying covariates is a model

where a;; =

for instances where some subjects are observed as having failed or experienced the event, even
though they in actuality “live on” past their observed-failure point. Hence, the MF model is useful
in situations where observed event failures in the survival data are contaminated with latent MF
cases.?

The log-likelihood statement of the time-varying MF model in (9) can be used in conjunction
with commonly used parametric survival models such as the exponential, Weibull, log-logistic, or
log-normal. Since Political Science survival model applications that use duration data which are
prone to the contamination of latent MF cases (e.g., civil conflict duration data) use the standard
Weibull model, we develop and define the log-likelihood function of the MF Weibull model with
time-varying covariates in the next section. In the Supplementary Appendix, we also develop and
assess the MF exponential model via MC simulations.

Misclassified Failure Weibull Model
Suppose that the survival time ¢ has a Weibull distribution of W (t;;|p, Xi;, B). Then the density
function and survival function in this case are as follows:

f (tijlo, Xij. B) = exp(X;;B)°p(exp(X;;B)ti;)P~" exp((— exp(X;;B)t;))
S(tijlp, Xij, B) = exp(—(exp(X;;B)t;;)°).

(10)

In the Supplementary Appendix, we follow the steps in equations (3) to (6) and use the parametric
time-varying MF model’s log-likelihood function in (9) to develop the log-likelihood function of the

2 Although our parametric split population survival model focuses on “misclassified failure” cases, scholars may (owing

to coding error) also overlook cases that have truly failed and instead treat these “misclassified survival” cases as having
survived past their true failed date. Developing a split population duration model that addresses this issue of “misclassified
survival” requires further research. However, the model developed here can potentially be adjusted to develop a split
population model that accounts for “misclassified survival” cases in survival datasets.
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MF Weibull model with time-varying covariates, which is given by:

exp(X;iB) p(exp(X;;B)t;))P~" exp((— exp(X;;B)t;j)P)
exp(—(exp(X;;8)t0;;)")

exp(—(exp(X;;B)t;;)°) ]}

exp(—(exp(X;;8)t0;;)°) | | -

ajj + (1 - C(,'j)

In L(p,ﬂ, )’)=Z{5U [n

i=1

+(1-Cjj)In [(1 - ajj) (1)
The model’s log-likelihood in (11) thus accounts for the probability of misclassification and
covariates that influence the survival of the event of interest given by a Weibull distribution.

While the MF Weibull model with time-varying covariates can be estimated by maximum
likelihood using, for example, BFGS,® we estimate this model via a MCMC algorithm employed
for Bayesian inference. We adopt the Bayesian estimation framework due to its flexibility and
the fact that it makes use of all available information and produces clear and direct inferences.
We thus label our model as the Bayesian MF Weibull model given the use of MCMC estimation.
To conduct Bayesian inference, we need to assign a prior for each of the MF Weibull model’s
three parameters—p, B, and y—and then define the conditional posterior distribution of these
parameters. Following standard practice (e.g., Carlin and Louis 2000), we assign the multivariate
normal priorto 8 = {B1,...,Bp}andy ={y1,...,¥p,}, and the Gamma prior for p with shape and
scale parameters a, and by:

p ~Gammal(ap, by), B~ MVN,, (0,X3), y ~MVNL(0,X,)
Zp ~ |W(S/3, Vﬁ) Zy ~ |W(Sy,V},),

(12)

where a,, b,, Sg,vg, Sy, vy are the hyperparameters. The multivariate normal prior that we employ
for estimation is a weakly informative prior. While we primarily use the multivariate normal prior
for our analysis, we also evaluate the robustness of the MC simulation and empirical application
results from our Bayesian MF Weibull model by separately assigning another weakly informative
prior for estimation of this model, namely the multivariate Cauchy priorto g = {B1,..., 85}
andy = {yi,...,¥p,}, and the Gamma prior for p with shape and scale parameters a, and b, as
described in (12) (where, as before, a,, b,, Sg, vg, Sy, v, are the hyperparameters).

We use Bayesian hierarchical modeling to estimate X3 and X, in (12) using the Inverse-
Wishart (IW) distribution when using the multivariate normal or Cauchy prior. Given these prior
specifications and the hyperparameters, the conditional posterior distributions for p, 8, and y
parameters in the Bayesian MF Weibull model (with time-varying covariates) are

P(pIC,X,Z,t,t0,B,y) « P(C,X,Z,t, 0, B,v.p) X P(pla,, by)
P(p|C7 X’ Z’ t’ to’ Y7p) “ P(C’ x, Z7 t7 to?p, Y’p) X P(ﬁ|zﬂ)
P(rIC,X,Z,t,t0,B,p) < P(C,X,Z,t,t0, B, v,p) x P(y|%)),

where P(C,X,Z,t,t0, 8, y,p) is the likelihood that can be obtained using the log-likelihood in
equation (11), and P(p|a,, b,), P(B|Z ), and P(y|X,) are the priors in equation (12).

We next describe the sampling scheme used for our Bayesian inference. Because closed forms
for the posterior distributions of p, 8, and y are not available, we use MCMC methods with the
following slice-sampling (Neal 2003) update scheme,

e Step 0. Choose initial value of 8, y,and p and set/ = 0.

The Broyden, Fletcher, Goldfarb, Shannon (BFGS) method. In our MC analysis, we briefly assess the properties of the MF
Weibull model estimated by BFGS.
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e Stepl Update 35 ~ P(X5|B) and X, ~ P(X,|y) from conjugate posteriors.*

e Step 2. Update B ~ P(BIC,X,Z,t,t0,y,p,35), ¥ ~ P(YIC.X,Z,t,t0,8,p,%,) and p ~ P(p|C,X,
Z,t,t0,8,v, a,, b,) using slice sampling. We use the univariate slice sampler with stepout and
shrinkage (Neal, 2003). Detailed steps to perform slice sampling for 8, y, and p are described
in the Supplementary Appendix.

e Step 3. Repeat Step 1and Step 2 until the chain converges.

e Step 4. After N iterations, summarize the parameter estimates using posterior samples.

Monte Carlo Simulations

We conduct 15 MC experiments to compare the performance of the survival models discussed
above. Each experiment evaluates samples of N = 1,000, N = 1, 500,and N = 2,000. Our primary
MC experiments simulate either a non-MF Weibull-distributed outcome variable (Experiment 1)
or a MF Weibull-distributed outcome variable (Experiment 2) and in each case compare the
performance of a Bayesian Weibull model to that of a Bayesian MF Weibull model. Experiments
3-4 assess maximum likelihood estimated (via BFGS) Weibull and MF Weibull models for the
same non-MF Weibull (Experiment 3) and MF Weibull (Experiment 4) simulated outcome variables.
Experiments 5-8 simulate an exponentially distributed® outcome variable (Experiments 5 and 7),
or a MF exponential outcome variable (Experiments 6 and 8), and compare the performance
of (i) Bayesian Weibull, MF exponential, and MF Weibull models (Experiments 5-6) or (ii) BFGS
exponential, Weibull, MF exponential and MF Weibull models (Experiments 7-8). Experiments
9-11 return to our Bayesian Weibull and Bayesian MF Weibull models and compare these
two estimators under circumstances of increasingly larger MF rates. Finally, Experiments 12-15
reevaluate our primary MC results when using (i) an alternate prior specification or (ii) a (MF)
log-logistic data generating process (d.g.p.).

For all experiments, we set sims = 500 and assign our survival stage covariates (x) asx = (1, X;)’
where Xy is drawn from Unif orm[—-2.5, 12]. The primary MF experiments (Experiments 2, 4, 6, 8,
13, and 15) then add a moderate level of MF cases (a = 5%) within the resultant survival outcome
variable (Experiments 2, 4, 6, and 8), or add MF rates of 8%, 12%, and 15% (Experiments 9, 10,
and 11). These modest levels of misclassification are anticipated to be comparable to MF rates
within applications considered below. To generate MF rates, we define a set of misclassification
stage covariates z = (1,z;,2;)’, where zy = /n(Uniform[0,100]) and z; = x,. Parameter values
are assigned as (81, 82)’ = (1,3.5) for our survival stage predictors. Our misclassification stage
parameters are defined as (y1,vy2,v3)’ = (-2,3,3)" (Experiments 2, 4, 6, 8, 13, and 15), or as
(ri.v2,v3)" = (2,1,4)" (Experiment 9), (y1,y2,¥3)" = (=3,2,5)" (Experiment 10), or (y1,y2,¥3)" =
(4.5,-1,5)" (Experiment 11). The (MF) Weibull-distributed outcome variables (Experiments 1-4;
9-11,13) use p = 2. The models used in Experiments 1-2, 4-6, 9-11, and 14-15 use a multivariate
normal (weakly informative) prior; whereas the models employed in Experiments 12-13 use a
multivariate Cauchy (very weakly informative) prior. For each parameter estimate, we retain and
evaluate the (MCMC-simulated) mean estimate and standard error (MCSE), as well as the root mean
square error (RMSE) and 95% (credible/confidence) coverage probabilities (CPs).

Experiment 1 evaluates the performance of (i) a Bayesian Weibull model and (ii) a Bayesian
MF Weibull model when the true d.g.p. is Weibull with no MFs. We report these results in the top
portion of Table 1, and also plot the full distributions of each model-specific parameter estimate
within Figure A.1 of the Supplementary Appendix. In cases where a researcher encounters a non-
MF Weibull-distributed outcome variable, we find in Table 1 and Figure A.1 that the Bayesian
MF Weibull estimator exhibits comparable performance to a standard Bayesian Weibull model.
For example, across all 8 parameters of interest, the Bayesian Weibull and Bayesian MF Weibull

The closed form of the full conditional distributions for X5 and X are derived in the Supplementary Appendix.
A Weibull-distributed outcome variable withp = 1.
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Table 1. Markov Chain Monte Carlo (MCMC) B—Estimates for Experiments 1and 2.

Bayes Weibull ~ 1.000 0.004 0.026 0.954 3.500 0.001 0.004 0.950

1000 Bayes MF Weibull 1.000 0.033 0.028 0.916 3.500 0.005 0.004 0.938
1500 Bayes Weibull ~ 1.003 0.004 0.022 0.936 3.500 0.001 0.003 0.934

Bayes MF Weibull 1.000 0.027 0.022 0.950 3.500 0.004 0.003 0.956
2000 Bayes Weibull ~ 1.001  0.003 0.018 0.950 3.500 0.000 0.003 0.940

Bayes MF Weibull 0.998 0.023 0.020 0.932 3.500 0.003 0.003 0.942

Bayes Weibull ~ 1.209 0.005 0.209 0.000 3.480 0.001 0.020 0.062

1000 Bayes MF Weibull 1.002 0.003 0.027 0.940 3.500 0.000 0.004 0.958
1500 Bayes Weibull ~ 1.215  0.004 0.215 0.000 3.479 0.001 0.021  0.008

Bayes MF Weibull 1.004 0.003 0.023 0.934 3.500 0.000 0.003 0.940
2000 Bayes Weibull 1194  0.004 0.194 0.000 3.482 0.001 0.018 0.006

Bayes MF Weibull 1.005 0.002 0.019 0.954 3.499 0.000 0.003 0.940

Note: True parameter values are Sy = 1 and By = 3.5.

models recover averaged parameter estimates that are virtually identical. This is corroborated by
the RMSEs and CPs reported in Table 1, which indicate that our Bayesian Weibull and Bayesian
MF Weibull models recover 4’s with comparably low levels of bias, and comparably high levels of
coverage, respectively. Indeed, there are several instances where the Bayesian MF Weibull model
exhibits slightly less bias than the Bayesian Weibull. However, although both models consistently
exhibit low MCSEs, the Bayesian Weibull model’s MCSEs are consistently smaller than those of the
Bayesian MF Weibull.

In sum, while the Bayesian Weibull model outperforms the Bayesian MF Weibull model in
terms of efficiency, Experiment 1 suggests that (mis)applying the Bayesian MF Weibull to non-MF
Weibull-distributed survival data does not lead to substantial biases in one’s resulting parameter
estimates. These conclusions are reinforced by Figure A.l, which demonstrates that the MF
Bayesian Weibull model exhibits comparable parameter-estimate distributions (across 500 sims)
to those of the standard Bayesian Weibull model, for all N’s considered.

Experiment 2 (re)evaluates the performance of the Bayesian Weibull and Bayesian MF Weibull
models when the true d.g.p. is MF Weibull. We report these MC results in the lower half of
Table 1 (B parameters) and in Table 2 (y parameters). We also plot the full distributions of each
parameter in the Supplementary Appendix. These tables and figures reveal very favorable results
for the Bayesian MF Weibull model, and less than favorable results for the Bayesian Weibull
model. Looking first at the B estimates reported in Table 1, the Bayesian MF Weibull 3’s are
highly comparable to our true parameter values, and improve in this respect as the number of
observations is increased from 1,000 to 2,000. In fact, as the sample size increases, the obtained
values of the beta covariates not only converge to their true theoretical value but also the RMSEs
of these values shrink further to negligible levels and the 95% Empirical CPs remain above
90% for these obtained values. This broadly suggests that as the size of the dataset increases
to even modest levels, our (Bayesian) MF models provide reliable and accurate estimates. By
contrast, the standard Bayesian Weibull model’s mean f’s substantially overestimate 8, and
typically underestimate 8 no matter the N considered. These conclusions are reinforced by the
RMSE and CP values reported in Table 1. Herein, the Bayesian MF Weibull exhibits (i) RMSEs that
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Table 2. Markov Chain Monte Carlo (MCMC) y—Estimates for Experiment 2.

1000 Bayes MF Weibull -1.314  0.226 0.975 0.880 2.020 0.127 0.347  0.908 3.395 0.141 0.545 0.922
1500 Bayes MF Weibull —1.150 0.185 0.992 0.802 1962 0.096 0.294 0.882 3.374 0.108 0.485  0.880
2000 Bayes MF Weibull -1.362  0.228 0.879  0.828 2.041 0.133 0.313 0.904 3.417 0.141 0.505 0.870

sisAjeuy jed1Mjod | ‘o 19 1zzobog "7 uiwpluag

Note: True parameter values are yg = =2, y; = 2,and yp = 3.
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are 5-10 times smaller than the Bayesian Weibull models’ RMSEs and (ii) CPs of 93%-95%—far
higher than the Bayesian Weibull’s CPs (of 0%-8%).

The full parameter distributions presented in Figure A.2 reinforce the above observations in
demonstrating that—relative to the Bayesian MF Weibull model—the Bayesian Weibull’s £’s do a
substantially worse job in capturing the true parameter values, across all sets of 500 simulations
examined in Experiment 2. Turning to Experiment 2’s MF Weibull y estimates (Table 2 and Figure
A.3), we find in our y values that our Bayesian MF Weibull model generally recovers each true y
value quite well. That being said, the RMSE, CP, and MCSE values reported in Table 2 nevertheless
suggest that the Bayesian MF Weibull model’s y’s exhibit slightly higher bias, worse coverage, and
lower efficiency than was the case for the Bayesian MF Weibull’s 4s in Experiment 2.

We next turn to MC Experiments 3-4, which assess the performance of our maximum likelihood
estimated (BFGS) Weibull and MF Weibull models in circumstances where one’s outcome variable
follows a Weibull survival process (Experiment 3) or a MF Weibull survival process (Experiment 4).
We report these full MC results in the Supplementary Appendix, and summarize the key
insights here. First and foremost, Experiments 3-4 yield similar conclusions to those obtained
in Experiments 1-2. When one’s d.g.p. is Weibull (Experiment 3), the BFGS Weibull and BFGS MF
Weibull models perform comparably, with no noticeable differences in bias, coverage, or efficiency
across these two estimators. However, when the d.g.p. is instead MF Weibull (Experiment 4), the
BFGS MF Weibull exhibits consistently lower bias, superior coverage, and higher efficiency than
the BFGS Weibull model, with the BFGS MF Weibull’s RMSEs generally being 5-10 times smaller
than those of the BFGS Weibull. Hence, the risks to inference of (mis)applying the MF Weibull in
the absence of MFs are fairly low, whereas the inferential risks of (mis)applying a Weibull to MF
survival data are substantial.

We can also compare the Bayesian MF Weibull results obtained in Experiment 2 to those of
the BFGS MF Weibull in Experiment 4. Here we observe that the f’s from each MF model are
comparable across Experiments 2 and 4, as are the corresponding RMSEs. However, when one’s
outcome variable is MF Weibull, the Bayesian MF Weibull model’s y’s generally exhibit lower bias,
and higher efficiency, than those of the BFGS MF Weibull. Thus, we can conclude that the Bayesian
MF Weibullis superior to the BFGS MF Weibull model in accuracy and efficiency when the d.g.p. is
MF Weibull. This suggests that researchers should generally favor the Bayesian MF Weibull model
over the BFGS MF Weibull model for applied research.

Experiments 5-8 simulate either an exponentially distributed outcome variable (Experiments
5and 7) or a MF exponential outcome variable (Experiments 6 and 8). These experiments are fully
presented in the Supplementary Appendix, and reevaluate our Bayesian or BFGS (MF) Weibull
models alongside Bayesian or BFGS (MF) exponential survival models. Across MC Experiments
5-8, we again find that the (Bayesian and BFGS) MF survival models perform comparably to
appropriate non-MF survival estimators when the true d.g.p. exhibits no MFs. When the d.g.p.
is instead MF exponential, we determine that (i) the (Bayesian and BFGS) MF survival models
again substantially outperform all non-MF survival models in bias, CPs, and efficiency and (ii) the
Bayesian MF survival models generally remain preferable to the BFGS MF survival models in these
contexts. Furthermore, we find in each relevant comparison that the MF Weibull models exhibit
comparable, and at times superior, performance to the MF exponential models. This suggests that
the Weibull MF model should be preferred over the MF exponential estimator in applied research,
given the former’s added flexibility in situations where one’s hazard rate is non-constant.

Whereas Experiments 2, 4, 6, and 8 employ a MF rate of 5%, Experiments 9-11 increase this
MF rate above 5%. These latter experiments—which we present in the Supplementary Appendix—
increasingly favor the Bayesian MF Weibull model over the Bayesian Weibull model as one’s MF
rate extends beyond 5%. To illustrate this, we average the N = 1,000, N = 1,500, and N = 2,000
RMSE results that we obtain from Experiment 1 (o = 0), Experiment 2 (o« = 5%), Experiment 9
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Figure 1. Comparison of survival stage RMSEs under increasing MF rates.

(a = 8%), Experiment 10 (o = 10%), and Experiment 11 (o = 15%). We then plot these averaged
RMSE values (and their standard deviations) separately for our Bayesian Weibull and Bayesian MF
Weibull models in Figures 1a (8o) and 1b (B;). Herein, both models exhibit comparable RMSEs for
Bo and 1 when the d.g.p. is non-MF Weibull. However, as one’s MF rate increases, we find that the
Bayesian MF Weibull model’s 8 RMSEs remain effectively flat, whereas those the Bayesian Weibull
dramatically increase. Notably, the Bayesian MF Weibull already exhibits RMSEs that are over 5
times smaller than those of Bayesian Weibull when a = 5%, and these Bayesian MF Weibull RMSEs
then become up to 28 times smaller than those of the Bayesian Weibull when « is increased to
15%. Hence, Experiments 9-11 further underscore the preferability of the Bayesian MF Weibull in
situations of modest-to-moderate MFs.

The Supplementary Appendix also evaluates the sensitivity of our MC findings to two additional
scenarios. First, Experiments 12-13 reevaluate our primary MC findings when our Bayesian
(MF) Weibull models are specified with a multivariate Cauchy prior as opposed to our favored
multivariate normal prior. This choice does not affect the substantive insights discussed above,
although the multivariate Cauchy prior does yield slightly higher bias in the Bayesian MF
Weibull’s y estimates, relative to the values reported in Table 2. Second, Experiments 14-15 in the
Supplementary Appendix examine the performance of the Bayesian (MF) Weibull models when
applied to a (MF) log-logistic d.g.p., and compare these models to a Bayesian Cox proportional
hazards (PH) estimator that makes no assumptions about the shape of the baseline hazard
function. When an outcome’s d.g.p. is log-logistic, we find that the Bayesian Cox PH model
outperforms the Bayesian (MF) Weibull models. However, when an outcome’s d.g.p. is log-logistic
with a 5% MF rate, our Bayesian MF Weibull model noticeably outperforms the Bayesian Cox
PH model in both bias and coverage. Thus, in instances where one encounters a non-Weibull
distributed outcome variable that exhibits a modest MF rate, the Bayesian MF Weibull model can
often remain a superior choice over non-MF, semiparametric alternatives.

Empirical Applications

We estimate our Bayesian MF Weibull model on survival data used in two published studies in
Political Science that employ standard Weibull models. The second application—fully presented
in the Supplementary Appendix—is about the survival of democratic regimes. However, for our
first application presented here, we consider a survival dataset measuring the duration of civil
conflicts obtained from a study published by Buhaug, Gates and Lujala (hereafter Buhaug et al.)

Benjamin E. Bagozzi et al. | Political Analysis 425


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2019.6

Downloaded from https://www.cambridge.org/core. University of Delaware, on 10 Oct 2019 at 17:52:13, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/pan.2019.6

PA

in 2009. Their paper theoretically posits that geographic covariates such as logged distance from
the conflict center to the capital city (Distance to capital (In)) and civil conflicts in border regions
(Conflict at border) decrease the hazard of civil war termination or equivalently lead to longer
civil wars, while higher Rebel fighting capacity increases the hazard of civil war failure. More
importantly, following Collier, Hoeffler, and Soderbom (2004) and Fearon and Laitin’s (2003)
theoretical claim, Buhaug et al. (2009) also assess whether countries with higher GDP per capita
at onset (In) of civil wars are likely to be associated with a higher hazard of civil war termination
(i.e., shorter civil conflicts). Next, they test—as suggested by Balcells and Kalyvas (2014)—whether
the dummy for post-Cold War years is associated with a higher hazard of civil war failure. Finally,
following Cunningham (2006) Buhaug et al. (2009: 551-554) test whether higher democracy score
at (the) onset of civil wars are associated with longer civil conflicts.

To statistically assess these theoretical predictions, Buhaug et al. (2009) use country-level
survival data measuring the duration of civil conflicts (1946-2003) in days as the outcome variable,
which is labeled as civil war duration. These data are obtained from the Uppsala/PRIO Armed
Conflict Dataset (ACD). Building on extant civil war duration analyses (e.g., Balch-Lindsay and
Enterline 2000, Thyne 2012), civil conflict is coded as “terminated” by Buhaug et al. (2009: 556)
when the number of battle deaths falls and stays below—as per the UCDP/PRIO ACD criterion—the
threshold of 25 for at least 24 months. Buhaug et al. (2009) estimate a standard parametric
maximum likelihood estimation (MLE) Weibull model in which they include the following
covariates listed earlier that influence civil war duration: distance to capital (In), conflict at border,
a binary measure of rebel (group) fighting capacity, GDP capita at onset (In) of civil conflicts, the
post-Cold War years dummy, a measure of democracy score at onset of civil conflicts, and a Border x
distance (In) control. In a fully specified MLE Weibull model, Buhaug et al. (2009: 563) find support
for their predictions that conflict at border, distance to capital (In) and democracy score at onset
statistically have a negative (positive) and reliable effect on the hazard of civil conflict failure (civil
conflict duration). They also report that the statistical association between GDP capita at onset (In)
and the hazard of civil conflict termination is positive, but unreliable. They, however, find robust
support for the claims that post-Cold War and rebel fighting capacity have a statistically positive
and reliable effect on the hazard of civil conflict failure.

Although now standard practice in the civil conflict literature (Thyne 2012; Themnér and
Wallensteen 2014), Buhaug et al.’s use of an annual 25 battle-deaths threshold over a 24-month
period as a criterion to code conflict termination can lead to the inclusion of MF cases in the
data. First, the use of 24-month spells to identify conflict termination is likely to be conservative
for lower-intensity conflicts in remote or poor information environments, or in situations where
some groups or officials do not recognize the conflict as having ended. Such cases where the date
of civil conflict termination is ambiguous are unlikely to capture the “true” end date. Take, for
instance, the Second Congo War, which officially ended in 2003. Is the correct end date July 2003
during which a provincial government assumed power? Or is October 2008, the date recorded
for termination of the Second Congo War in the UCDP Conflict Termination Dataset (Kreutz 2010),
more accurate although other key sources suggest that Congo’s civil war has not ended (Larmer,
Laudati, and Clark 2013)?

A second issue is that different sources may record distinct dates for civil conflict termination
even though they use the same battle-death numbers threshold criterion to code the “end” of civil
conflict because of subjectivity involved in accurately identifying the number of battle deaths.
For instance, the UCDP Conflict Termination Dataset (Kreutz 2010) used by Buhaug et al. (2009)
denotes a civil conflict in the state of Nagaland in India as beginning in 1992 and experiencing
termination in 1997, the first year during which the number of battle deaths fell below 25. Yet other
sources that use the same UCDP battle-death threshold criterion emphasize that civil conflict
between the Indian Government and Nagaland’s rebels during the 1990s did not “end” in 1997 but
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rather persisted into 2004 or beyond (Shimray 2001). Table A.13 in the Supplementary Appendix
also identifies many additional terminated civil conflict cases in the Buhaug et al. data—e.g.,
civil wars in other parts of India, Myanmar, the Democratic Republic of Congo, and Thailand—
that persisted beyond their recorded failure time. Hence, without perfect information about civil
war termination dates and the number of civil conflict battle deaths, it is plausible that civil
war duration datasets including Buhaug et al.’s data are contaminated with MF cases that have
persisted beyond their observed-failure point.

We thus replicate a key specification from Buhaug et al. (2009; Table 1, Column 5) by separately
estimating and comparing the results from the following models: (i) our Bayesian MF Weibull
model that (unlike the standard Weibull models) statistically accounts for MF cases in Buhaug
et al.’s civil conflict duration data, (ii) a standard MLE Weibull model and (iii) a standard Bayesian
Weibull model. We present the results from each of these models graphically below and in the
Supplementary Appendix (to save space). Note that these models focus on the Buhaugetal. (2009)
specification which evaluates the following variables’ effect on civil conflict duration: GDP capita
at onset (In), post-Cold War years, democracy score at onset, rebel fighting capacity, distance to
capital (In), conflict at border, and Border x distance (In). Specifically, we start our assessment of
this Buhaug et al. (2009) specification by estimating a standard Weibull hazard model first via MLE
and then via Bayesian MCMC. Additionally, we estimated four different Bayesian MF Weibull model
specifications. To this end, recall that unlike the standard Weibull model, the Bayesian MF Weibull
model estimates the effect of both (i) a series of X covariates on civil conflict duration, and (ii) a set
of Z covariates on the probability of failure misclassification (denoted as a).

Hence, for the Bayesian MF models, we first report a baseline Bayesian MF Weibull specification.
The survival stage in this baseline MF model of civil conflict duration includes the same
variables used in the Buhaug et al. (2009) study, while the misclassification failure probability
stage (hereafter “misclassification stage”) includes just the intercept. The survival stage of the
second Bayesian MF Weibull specification also incorporates the same variables used by Buhaug
etal. (2009), but adds some theoretically identified covariates to the MF model’s misclassification
stage. Here, we first include GDP capita at onset (In) since conflict-afflicted countries with higher
levels of economic development may have greater media coverage of civil conflicts (Collier 2003,
Puddephatt 2006). This improves the accuracy of information about civil conflict termination
dates as per the UCDP battle-deaths criterion, which reduces the probability of misclassification
failure. Next, we include distance to capital (In) as information about battle-related fatalities
(needed to code civil war termination) is often inaccurate in civil conflicts fought in remote areas far
away from the capital city (Puddephatt 2006). This misclassification stage covariate is thus likely
to be positive. We also incorporate conflict at border in the misclassification stage and expect it
to be positive as governments in civil war-affected countries often provide inaccurate information
about battle-related deaths in civil wars in their state’s border regions owing to security concerns
(Buhaug and Gates 2002, Lischer 2015).

The survival stage of the third Bayesian MF Weibull specification also repeats the survival stage
used by Buhaug et al. (2009; Table 1, Column 5), while this specification’s misclassification stage
includes the three covariates discussed above and the following two variables: rebel fighting
capacity and democracy at onset. Finally, the fourth specification includes all covariates from
the survival stage in the Buhaug et al. study for both the Bayesian MF Weibull model’s survival
stage and misclassification stage. The Bayesian MF Weibull (and Bayesian Weibull) models are
each estimated using the multivariate normal prior and our slice-sampling (MCMC) algorithm for
which we specify the hyperparametersas: a = 1,b = 1,53 = I;n, Sy = Ipp,vg = plandyv, =
p2.° The results remain robust when these models are estimated using the multivariate Cauchy

The Bayesian MF Weibull specification results are based on a set of 50,000 iterations (10,000 iterations in one case) after
3,000 burn-in scans.
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Figure 2. Gamma (y) covariate results.

prior (see Section 1V, Supplementary Appendix). We first discuss the Bayesian MF Weibull model’s
misclassification stage and then the model’s survival stage results. The misclassification stage
results are presented via the following illustrations derived from the models results: dot-whisker
plots including Figure 2a and Figures A.25(a)-(b) in the Supplementary Appendix that illustrate
each misclassification stage covariate’s posterior mean estimate with its 95% Bayesian Credible
Intervals (hereafter “BCI”), the first difference in misclassification probabilities from the Bayesian
MF model’s misclassification stage (Z) covariates (Figure 2b), and the posterior probability of some
misclassification stage covariates derived from their respective posterior sample estimates.

The misclassification stage covariates dot-whisker plots mentioned above show that conflict
at border is positive in the misclassification stage of each Bayesian MF Weibull specification and
this estimate’s 95% BCls exclude zero. The first difference in misclassification probabilities derived
from the second Bayesian MF Weibull specification’s misclassification stage covariates reveals that
increasingthe conflict at border dummy from 0 to 1 (here and below, while other covariates are held
at their means or modes) increases the probability of a misclassified war failure by approximately
5.61% and the 95% BCI of this effect excludes zero (see 2b). Moreover, the posterior probability
that the hypothesized effect of conflict at border on the likelihood of MF is positive is 0.996. Hence,
as predicted theoretically, it is reliable to infer that civil conflicts that occur in the border regions
of war-torn countries are more likely to be misclassified as having been terminated when they
(possibly) had not. As anticipated, the posterior mean estimate (Figure 2a), posterior probability
and the substantive effect of distance to capital (In) in the misclassification stage (Figure 2b) show
that civil conflicts fought in geographically remote areas are indeed more likely to be misclassified
as having failed when they had not. But the 95% BCI of this covariate’s posterior mean estimate
illustrated in Figure 2a and Figure A.25(a) includes zero. Thus, the aforementioned empirical
relationship is not reliable.

The posterior mean estimate (Figure 2a and Figures A.25(a)-(b)), posterior probability and the
substantive effect of GDP capita at onset (ln) in Figure 2b show that the relationship between
this covariate and the likelihood of misclassification failure is negative (as hypothesized) in the
Bayesian MF Weibull specification’s misclassification stage. But the 95% BCI of this covariate’s
mean estimate includes zero in most—but excludes zero in one of the—misclassification stage
specifications. While this result for GDP capita at onset (In) supports our claim that civil conflicts
in more economically developed countries are less likely to be misclassified as having been
terminated when they had not, it also shows that this empirical association is less reliable.

We next discuss the survival stage covariate estimates in the (MF) Weibull models that focus on
the hazard of civil conflict termination. To this end, first consider the top two specificationsin each
of the dot-whisker plots’ in Figures 3a-3f that illustrate the survival stage (i) coefficient estimates

The dot-whisker plots for the constant and the interaction term variable are illustrated in Figures A.26a-A.26b of the
Supplementary Appendix.
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Figure 3. Dot-whisker plots for beta covariates in MLE and Bayesian (MF) Weibull models.

of the covariates from the standard MLE Weibull model and their respective 95% confidence
intervals and (ii) posterior mean estimates of the same covariates from the Bayesian non-MF
Weibull model and their respective 95% BCI. Figures 3a, 3b and 3d show that the influence of
distance to capital (In), conflict at border and democracy score at onset on the hazard of civil conflict
termination are each negative and highly reliable in the standard MLE and Bayesian Weibull
models, which is exactly what Buhaug et al. (2009) finds for these covariates. The positive effect
of rebel fighting capacity on the hazard of conflict failure is also reliable in the MLE Weibull model,
as shown by Buhaug et al. (2009: 561). GDP capita at onset (n) is positive in both the standard MLE
and non-MF Bayesian Weibull models (Figure 3e), which mirrors Buhaug et al.’s (2009: 563) result
for this covariate. The positive influence of GDP capita at onset (In) is statistically unreliable in the
MLE Weibull specification as (also) found by Buhaug et al. (2009), but statistically reliable in the
Bayesian non-MF Weibull model. Figure 3f shows that the positive association between post-Cold
War and the hazard of civil conflict termination is statistically reliable in the MLE and Bayesian
non-MF Weibull models, which is what Buhaug et al. (2009) and Balcells and Kalyvas (2014) find.

However, the Bayesian MF Weibull’s estimates differ substantially from those in the standard
MLE (and Bayesian) Weibull models that Buhaug et al. (2009) report.® To see this, we focus on the:
(i) bottom four specifications in Figures 3a-3f that illustrate the survival stage covariates’ posterior
mean estimates and their respective 95% BCI from the four Bayesian MF Weibull specifications
delineated earlier and (ii) posterior probability of the key Bayesian MF Weibull model’s survival
stage covariates reported that are derived from their respective posterior sample estimates®. We
also assess the hazard ratio plots of the Bayesian MF Weibull model’s key survival stage covariates
in Figures A.27(a)-(b) in the Supplementary Appendix.

The survival stage posterior mean estimates (Figures 3a-3b) of both distance to capital (In) and
conflict at border show that each of these two covariates are almost always negatively associated
with the hazard of civil conflict failure in the MF Weibull models, although this association is
unreliable since the 95% BCls of the variables include zero. This result is distinct from Buhaug
et al. (2009) who find that the negative association between each of these two covariates and the
hazard of conflict failure is highly robust in their MLE Weibull model. This suggests that once we

Beyond the differences in effect size and/or direction (discussed below), note that our Bayesian MF Weibull survival
estimates also are less reliable than our standard Weibull estimates, given that the former survival stage estimates are
now conditioned, during estimation, on a set of MF estimates (and corresponding MF probabilities) that exhibit their own
levels of imprecision.

The posterior probability is calculated by dividing the total number of posterior estimates that confirm the hypothesized
effect of the covariate by the total number of posterior estimates. A higher posterior probability confirms the hypothesized
relationship more reliably.
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statistically account for MF cases in the Bayesian MF Weibull model, Buhaug et al.’s hypothesized
negative relationship between the two covariates—distance to capital (In) and conflict at border—
and the hazard of civil war failure is weak.

Next, the survival stage posterior mean estimate of log of GDP capita at onset in the baseline
Bayesian MF Weibull specification (where the misclassification stage only includes the intercept)
is negative (see Figure 3e). The survival stage estimate of GDP capita at onset (In) remains
negative and its 95% BCl excludes zero in the Bayesian MF Weibull specifications in which the
misclassification stages include other covariates (Figure 3e). Further, based on (for example) the
third Bayesian MF Weibull specification’s survival stage results, the posterior probability that the
log of per capita income’s (onset) effect on the hazard of civil conflict termination is positive, as
predicted by Buhaugetal. (2009), is merely 0.022. Hence, the Bayesian MF Weibull model’s survival
stage results indicate that the log of per capita income at the onset of civil wars has a reliably
negative influence on the hazard of civil war failure, which is exactly the opposite of what Buhaug
et al. (2009) find. This suggests that a possible prolonging effect of GDP per capita on civil war
duration may have gone unnoticed in many past analyses,'® which failed to take into account MF
cases and these MF cases’ potential association with low GDP per capita.

Additionally, consider Figure A.27(a) in the Supplementary Appendix. This figure illustrates
hazard ratio plots derived from the estimate of GDP capita at onset (In) in the third Bayesian
MF Weibull specification that includes theoretically identified covariates and additional controls
in the misclassification stage, standard MLE and Bayesian Weibull specifications. Figure A.27(a)
reveals that increasing GDP capita at onset (In) from 1 SD below to 1 SD above its mean while
holding the other survival stage covariates at their mean or mode increases the hazard of civil war
terminationin the standard MLE and Bayesian Weibull models; this effect is, however, unreliable in
the MLE Weibull model. In sharp contrast, the figure shows that increasing GDP capita at onset (In)
from1SD below to 1SD above its mean reliably decreases the hazard of civil conflict termination by
32.2% in the Bayesian MF Weibull model. Hence, reasonable increases in per capita income at the
outbreak of civil wars increase the hazard of civil conflict failure in the standard Weibull models.
But the same changes in GDP capita at onset (In) in the Bayesian MF Weibull specification lead to
a substantial and reliable decrease in the hazard of civil war termination after MFs are accounted
for.

We now assess another variable, the survival stage estimate of post-Cold War years. As predicted
by Balcells and Kalyvas (2014) and Buhaug et al. (2009), the hazard ratio plot in Figure A.27(b)
in the Supplementary Appendix shows that increasing the post-Cold War dummy from 0 to 1
while holding other survival stage covariates at their mean or mode increases the hazard of
civil war termination in the standard MLE and Bayesian Weibull models and this effect is highly
reliable. But in contrast to the standard Weibull model’s results for this variable, the posterior
mean estimate of post-Cold War is—as illustrated in Figure 3f—negative in the survival stage"
in the Bayesian MF Weibull specifications and the 95% BCI of this covariate includes zero in all
of these specifications.'? Moreover, the effect of changing the post-Cold War dummy from 0 to
1 on the hazard of civil conflict termination (while holding the other survival stage covariates at
their mean or mode) is highly unreliable as well. Hence, unlike previous studies, the association
between post-Cold War and the hazard of civil war termination tends to be negative but this

10 Exceptions include Balcells and Kalyvas (2014), who find that GDP per capita increases civil war duration (although this
result is unreliable in some of their specifications), as well as Brandt et al. (2008), who find that GDP per capita increases
civil war duration for civil wars ending in government victory specifically.

11 Interestingly, we learn from the third Bayesian MF Weibull specification’s survival stage (for example) posterior probability
that the hypothesized effect of post-Cold War on the hazard of civil war failure is negative is almost 0.98, which is distinct
from the Buhaug et al. (2009) finding for this covariate.

12 We also learn from the Bayesian MF Weibull specification’s survival stage results and posterior probability that post-Cold
War’s effect on the hazard of civil war termination is positive, as suggested by Balcells and Kalyvas (2014).
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result is not consistently reliable. Last, we find similar contradictory results for additional survival
stage covariates from the Buhaug et al. (2009) study, including (for example) democracy score at
onset, suggesting that past findings in these regards may have at least been partly attributable to
misclassification in civil conflict failures, and to associations between failure misclassification and
the variables reviewed here.

A battery of specification robustness tests presented in the Supplementary Appendix shows
that the posterior mean estimates of all the key survival stage covariates in the Bayesian MF
Weibull specifications such as per capita income, post-Cold War years, and democracy score
remain robust in not just additional specifications that include alternative controls in the MF
Weibull model’s misclassification stage but also specifications estimated using the Cauchy prior
(see Section IV of Supplementary Appendix). Next, as described in the Supplementary Appendix,
convergence diagnostic checks including autocorrelation plots, the Geweke (1992) convergence
diagnostic test and the Heidelberger and Welch (1983) test of stationarity show thatin the Bayesian
MF Weibull specifications of interest, (i) all the misclassification stage parameter estimates have
converged properly and (ii) all the survival stage parameter estimates (including GDP capita
at onset (In) and post-Cold War) barring one have also converged properly (Figures A.28-A.29
and Tables A.14-A.15, Supplementary Appendix). Hence, altogether, comparisons of the standard
Weibull and Bayesian MF Weibull models suggest that the effects of several widely used predictors
of civil war duration are sensitive to the potential misclassification of civil war cases as having
failed when in fact they persisted. After statistically accounting for MFs within one widely used
dataset of civil war duration, we find that theoretical interpretations of some correlates of civil
war duration reverse in sign whereas others change in magnitude and/or become less reliable.
Thus, more attention should be paid to the “underreporting” of civil war termination dates in
empirical conflict research. The MF models proposed above allow researchers to account for such
underreporting of failure dates and assess when failure cases in survival datasets are more likely
to be misclassified, which is substantively appealing and empirically useful.

To further validate our model, we compare the predicted probability of MF derived from our
Bayesian MF Weibull’s misclassification stage to the UCDP/PRIO’s precision coding records of
the civil war end dates for the conflict years in Buhaug et al. (2009). To this end, first note that
UCDP/PRIO codes the degree of precision of civil war end dates in the ACD used by Buhaug
et al. (2009) on an ordinal 1 (all elements of the end date—day, month, year—are accurate) to 5
(at least two date elements are unknown and thus imprecise) scale. We use this precision coding
to operationalize two binary variables. The first (Imprecision_1) is coded as 1 for civil war end
dates in the Buhaug et al. (2009) data that are equal to 5 in the precision scale mentioned above
and 0 otherwise. The second binary variable (Imprecision_2) captures civil war end dates that
are greater than or equal to 3 in the 1-5 precision coding scale and is coded as 0 otherwise.
Therefore, Imprecision_1 denotes rebel-government civil war end dates that are highly imprecise
as per UCDP/PRIQ’s precision coding criteria, whereas Imprecision_2 denotes rebel-government
civil war end dates that are highly or moderately imprecise as per UCDP/PRIQO’s precision coding
criteria.

After operationalizing these two binary variables, we employ the misclassification stage
estimates from the full Bayesian MF Weibull specification to derive the predicted probability of
a civil war’s MF for each conflict year in Buhaug et al. (2009). We then evaluate the accuracy
by which these MF probabilities classify the two binary variables described above, using areas
under the receiver operating characteristic curve (AUCs) and F1 scores. In undertaking these
comparisons, we find that we are able to classify Imprecision_1 with an AUC of 0.62 and an
F1 Score of 0.52, whereas we are able to predict Imprecision_2 with an AUC of 0.63 and an F1
Score of 0.55. Thus, our misclassification stage does only a modest job in predicting the two
imprecision indicators, but does nevertheless offer some predictive leverage. Given that our
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misclassification stage is only specified with the variables used by Buhaug et al., and given that our
predictions do not come from a model that was itself directly trained on the binary imprecision
outcomes evaluated here, these current levels of accuracy are perhaps more impressive than they
would initially seem. Furthermore, the fact that our classification statistics each improve when
we include moderate imprecision cases in our binary outcome measure (i.e., for Imprecision_2)
suggests that our misclassification stage’s accuracy in classifying imprecision improves as the
“1’s” on this imprecision indicator more fully encompass the relevant imprecision cases in Buhaug
et al. (2009)—thereby further helping to validate our model and application.

Conclusion

Event failures in Political Science survival datasets are often imperfectly recorded according to
crude cutoff criteria or related misreporting processes. Imperfectly recorded event failures ensure
that some non-censored observations actually persist beyond their recorded failure in a survival
dataset. When this arises, conventional survival models can yield biased estimates. To address
this problem, we build on recent work on split population survival models and develop a new
“misclassified failure” (MF) split population survival model that explicitly models the probability
of MF (vs. right-censored) events. In doing so, our model accounts forimperfect detectionin failure
events within one’s evaluations of covariate effects on survival (i.e., duration) processes. As a
result, the MF split population survival model provides more accurate estimates of the parameter
effects when observed event failures include cases that in actuality “live on” past their observed-
failure point.

We define this model’s conditional posterior distribution and present a slice-sampling
estimation algorithm that allows researchers to conduct Bayesian inference on our model. We also
provide a dedicated R package for estimating this Bayesian MF survival model as a complement
to this paper. Results from extensive MC experiments and two empirical applications reveal that
when some recorded event failures in survival data have survived past their observed-failure
points, our Bayesian MF model yields estimates that are superior in accuracy and coverage
compared to estimates from regular survival models. Our MF duration model also provides
researchers with an opportunity to include variables in not only the model’s survival stage but also
within a stage that models the probability of a MF. This allows one to identify the conditions that
affect whether a duration caseis either more or less likely to be misclassified as having terminated;
potentially providing substantive insights into this secondary process. For some applications,
these insights will help to inform researchers of problematic coding and data collection decisions
with respect to event failures. In other cases, these insights and the substantive effects derived
from our model may reveal the theoretical mechanisms that cause political actors to overstate
failure in some cases but not others.

Notwithstanding these benefits, the model presented here can be extended in three main
directions. First, our statistical framework can be potentially used to develop the semiparametric
Cox PH MF model. Although scholars in Comparative Politics and International Relations
commonly use parametric survival models such as the Weibull model considered above, Political
Scientists also frequently use Cox PH models. Itis plausible that our parametric MF duration model
could be extended to the Cox PH context. Second, we focused on two empirical applicationsin our
paper: civil war duration and the survival of democratic regimes. Yet we mentioned earlier that
other survival datasets analyzed by scholars (e.g., Cress, McPherson, and Rotolo 1997; Cioffi-Revilla
and Landman 1999; Box-Steffensmeier, Radcliffe, and Bartels 2005) could also include imperfectly
recorded event failures that have survived past their observed-failure points. It may thus be
worthwhile to apply our parametric MF duration models to statistically assess additional duration
outcomes. Finally, we also note that left-censored survival data is widespread in Comparative
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Politics and International Relations (Carter and Signorino 2013). As such, our MF survival model
could also be extended to address this issue.

Supplementary material
For supplementary material accompanying this paper, please visit
https://doi.org/10.1017/pan.2019.6.
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